
PERIODS

In this talk, I’d like to tell you a few things about numbers. I’ll assume that, by some divine
power, we have been granted the ring Z of integers1.

Definition 1. Let C be the algebraic closure of the completion R of Q = Z[ 1
p
, p prime] at the

infinite place. A number is an element of C.

There are far too many numbers, so we want to study a special class of such. According
to our definition of C, it’s built from R, but even this has far too many elements. Since R is
itself built from Q, which is at least countable, let us declare that the nicest numbers of all are
elements of Q.

With our 20,000 years of experience trying to find better ways to count, we’ve found some
rules which allow us to play with numbers. For example, we can construct polynomials from
previously constructed numbers, and try to solve them.

Definition 2. An algebraic number is an element of C which can be written as a root of a
nonzero polynomial with coefficients in Q; in other words, an algebraic number is an element of
the algebraic closure Q. A transcendental number is an element of the complement C ∖Q.

Algebraic numbers are really nice, and include numbers like
√

2 and i. But there are a lot of
numbers which we’ve found control our lives that are transcendental:

Theorem 3 (Lindemann). If x ∈ Q, then ex ∈ C ∖Q.

As a consequence, if x ∈ Q, then log(x) ∈ C ∖ Q. Similarly, π is transcendental (if not,
then iπ would be an algebraic number; but then Lindemann tells us that eiπ = −1 would be
transcendental). I like to think about characteristic p a lot, which means that the exponential is
a vicious untameable beast. So let’s just say that e is still a scary number, and that I’d like to
gain some more confidence before trying to call it a “nice” number. But π is very nice; even if I
didn’t believe that, I’d have no choice but to get used to it if I wished to understand geometry.

Therefore, I’d like to expand my notion of “niceness” to include some transcendental numbers
(like π and log(2)) as well. There are many ways in which one can try to do this: for instance,
there are series expansions of π and log(2) (and e) given by

π = 4 tan−1
(1) = ∑

n≥1

(−1)n+1

2n − 1
, log(2) = ∑

n≥1

(−1)n+1

n
, e = ∑

n≥1

1

n!
.

Perhaps, then, we can try to define a subset of C consisting of numbers which can be expressed as
a well-behaved infinite sum where each term has a consistent expression as a fraction f

g
of some

functions f, g. This phrase is very suggestive of thinking about integrals. Moreover, it suggests
a way to exclude e from the list of “nice” numbers: if we ask that f and g be polynomials, then
we exclude 1

n!
.

Let us therefore make a definition, following Kontsevich and Zagier:

Definition 4. An element a ∈ R is called a period if it can be written as an absolutely convergent

integral ∫∆
f(x1,⋯,xn)

g(x1,⋯,xn)
dx1⋯dxn, where f and g are multivariable polynomials with coefficients in
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Q, and ∆ ⊆ Rn is defined by polynomial inequalities with rational coefficients. An element a ∈ C
is called a period if its real and imaginary parts are periods.

One can show that periods are closed under addition and multiplication, so they form a
subring P ⊆ C. Let us see some examples.

Example 5. The number π is a period, since

π = ∫
x2+y2≤1

dxdy = ∫
∞

−∞

dx

1 + x2
= ⋯

Note that there can be many different integral representations for a period.

Example 6. Logarithms are periods, since log(a) = ∫
a

1
dx
x

.

Example 7. Let n ≥ 2 be an integer. Then ζ(n) = ∑d≥1
1
dn

is a period. Indeed,

ζ(n) = ∫
0<xn<⋯<x1<1

dx1

x1
⋯
dxn−1

xn−1

dxn
1 − xn

.

For instance,

ζ(2) = ∫
1

0
∫

y

0

dx

1 − x

dy

y
= ∫

1

0
∫

y

0
∑
d≥1

xd−1dxdy = ∑
d≥1

1

d
∫

1

0
yn−1dy = ∑

d≥1

1

d2
.

We will try to explore periods in some detail today. Observe that there are some natural

operations defined on integrals of the form ∫∆
f(x1,⋯,xn)

g(x1,⋯,xn)
dx1⋯dxn: we can

● Add the integrands, or take unions of integration domains.
● Change variables by an invertible transformation Rn →Rn.
● Use the fundamental theorem of calculus/Stokes’ theorem to relate ∫∆

f
g
dnx to ∫∂∆

a
b
dn−1x

for some functions a, b, f, g.

These operations allow us to conjure a new integral representation of a period from a given
integral representation.

Conjecture 8 (Kontsevich-Zagier). One can pass between any two integral representations of
a period by one of the above three rules.

Let us see this conjecture in action.

Proposition 9 (Calabi). Euler’s equality ζ(2) = π2

6
can be obtained by using the above three

rules to some integral representations of ζ(2) and π2

6
.

Proof. Let us write ζ(2) = 1
3 ∑n≥0

4
(2n+1)2

. Then, by using the geometric series expansion, one

can show that

∑
n≥0

4

(2n + 1)2
= ∫

(0,1)2

1

1 − xy

dx
√
x

dy
√
y
.

Let us call this integral I; we wish to show that I = π2

2
using only the above three rules. We

then consider the change of variables given by the expressions

x =
z2(1 +w2)

1 + z2
, y =

w2(1 + z2)

1 +w2
.

The Jacobian of this coordinate change is 4
(1−xy)

√
xy

(1+w2)(1+z2)
, and the integration domain is changed

to z,w ≥ 0, zw ≤ 1. Therefore,

I = 4∫
z,w≥0,zw≤1

dw

1 +w2

dz

1 + z2
= 2∫

z,w≥0

dw

1 +w2

dz

1 + z2
= 2(∫

z≥0

dz

1 + z2
)

2

,
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where the final equality requires some manipulation (using (z,w)↦ (z−1,w−1)). We know that

the integral inside the parentheses is π/2, so we see that I = π2

2
only using the above three

rules. �

The geometers’ spidey-senses were probably tingling when we were listing the three rules
above (and perhaps when defining periods): one might expect that there is a more abstract
definition of periods, perhaps involving smooth manifolds and integration of differential forms
along smooth chains. It’s at this point that the talk (unfortunately) leaves the realm of what
has so far (perhaps) been accessible to undergraduates.

Definition 10. Let us redefine a period as a number α for which there exists a d-dimensional
smooth algebraic variety X over Q, a divisor D ⊆ X with normal crossings, a global algebraic
d-form ω ∈ ΩdX (so both ω and D are defined over Q), and a singular relative chain γ on X(C)

(so the boundary of γ is in D(C)), such that α = ∫γ ω. Let P′ be the subring of C consisting of

this notion of periods.

Example 11. Let α be an algebraic number which is a root of a polynomial f(x) ∈ Q[x]. Then
α is the integral ∫

α
0 dx with X = A1, D = V (xf), ω = dx, and γ being the path from 0 to α in

A1(C) = C.

Example 12. Let X = Gm, D = ∅, ω = dz
z

, and γ be the path t ↦ e2πit in Gm(C) = C ∖ {0}.
Then ∫γ ω = 2πi.

Theorem 13 (Huber–Müller-Stach). There is an equality P = P′ of subrings of C. In other
words, the sophisticated and “elementary” definitions of periods agree.

The above definition of periods is still not satisfactory, since we have not singled out the word
“integrating over cycles” (although we have at least uttered the word “cycle”). As we know from
algebraic topology, the most natural way to define integration is by passing to cohomology. This
motivates:

Definition 14. Let us again redefine a period as a number α for which there exists a smooth
algebraic variety X over Q and a subvariety D ⊆X such that α is in the image of the pairing

∫ ∶ Hi
(X(C),D(C);Q)⊗Hi

dR(X,D)→C.

Note that H∗
dR denotes the (relative) algebraic de Rham cohomology (so it is defined via algebraic

forms on X rel D which are defined over Q). Alternatively, α is a matrix coefficient of the period
isomorphism

Hi
dR(X,D)⊗Q C

∼
Ð→ H∗

(X(C),D(C))⊗Q C

for some choice of Q-bases of both sides. Let P′′ denote the subring of C consisting of this
further redefinition of periods.

Theorem 15 (Huber–Müller-Stach). There is an equality P = P′ = P′′ of subrings of C. In
other words, all our definitions of periods agree.

It is now natural to ask: can we rephrase the Kontsevich-Zagier conjecture in this way? The
answer is yes, but it is not a very deep rephrasing.

Definition 16. Let PKZ denote the ring generated by formal symbols (X,D,n,ω, γ), where
X is a smooth algebraic variety over Q, D ⊆ X is a closed subvariety, n ≥ 0 is an integer,
ω ∈ Hn

dR(X,D), and γ ∈ Hi(X(C),D(C);Q). We will simply denote such a tuple by ∫γ ω, and
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subject these tuples to the relations

∫
γ+γ′

ω = ∫
γ
ω + ∫

γ′
ω,

∫
γ
ω + ω′ = ∫

γ
ω + ∫

γ
ω′,

∫
f∗γ

ω = ∫
γ
f∗ω,

∫
∂γ
ω = ∫

γ
dω,

where the reader is left to unravel the meaning of the symbols.

Note that PKZ is only a ring, and not a field.

Example 17. Let ξ denote the element of PKZ defined by the data X = Gm, D = ∅, ω = dz
z

,

and γ being the path t↦ e2πit in Gm(C) = C∖ {0}. In the motivic literature, this is sometimes
called the Tate motive.

Conjecture 18 (Rephrasing of Kontsevich-Zagier). The map PKZ[
1
ξ
]→ P sending (X,D,n,ω, γ)↦

∫γ ω is an isomorphism.

At this point, there are two directions in which this talk could go. Either we could talk about
the motivic point of view on periods, or talk about exponential periods. Since I complained
that the exponential scares me, I should face my fears and talk about it instead of attempting
the Herculean task of explaining motives (in what I expect will be ten minutes of remaining
time). Let us follow the same recipe as before: first, we will give the “elementary” definition of
exponential periods, and then give a more sophisticated definition using de Rham cohomology.
This will still not explain why the exponential has a right to exist, but I was not expecting to
give a coherent answer to that anyway.

Definition 19. An element a ∈ R is called an exponential period if it can be written as an

absolutely convergent integral ∫∆ e
−V (x1,⋯,xn) f(x1,⋯,xn)

g(x1,⋯,xn)
dx1⋯dxn, where f , g, and V are multi-

variable polynomials with coefficients in Q, and ∆ ⊆ Rn is defined by polynomial inequalities
with rational coefficients. An element a ∈ C is called an exponential period if its real and
imaginary parts are periods. Let Pexp denote the subring of C consisting of exponential periods.

The notion of exponential periods includes many other constants of classical interest:

Example 20. The number
√
π is an exponential period (and it is believed that

√
π is not a

period). Indeed, this follows from the famous calculation

∫

∞

−∞
e−x

2

dx =
√
π.

This is perhaps the most important conceptual example of an exponential period. Indeed, note
that

√
2πi is an exponential period (since

√
i = 1+i

√
2

and
√

2 are both periods). It is the square

root of the period 2πi from Example 12. From the motivic point of view, the period 2πi is
absolutely fundamental (it corresponds to the element ξ ∈ PKZ). Therefore, exponential periods
should perhaps be viewed as obtained from a square root of ξ. (My belief is that this is why
the exponential exists.) One can show that (in general) there is no square root of the motive of
Gm, which is evidence for the belief that

√
π cannot be a period in the usual sense.

Example 21. Let γ be the Euler-Mascheroni constant, so

γ = lim
n→∞

(− ln(n) +
n

∑
d=1

1

d
) = ∫

∞

1
(

1

⌊x⌋
−

1

x
)dx = −∫

∞

0
e−x log(x)dx,
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where the final integral representation is nontrivial to derive. Kontsevich conjectured that γ
is an exponential period, and it was observed shortly after that since log(x) = ∫

x
1
dy
dx

, we can
rewrite the final integral above as

γ = −∫
∞

0
∫

x

1

e−x

y
dydx,

thereby showing γ ∈ Pexp.

Let us end by giving the definition of Pexp via de Rham cohomology:

Definition 22. Let us redefine an exponential period as a number α for which there exists a
smooth algebraic variety X over Q, a regular function f ∶X →A1, and a subvariety D ⊆X such
that α is in the image of the pairing

∫ ∶ Hi
(X(C),D(C), f ;Q)⊗Hi

dR(X,D, f)→C.

Here, H∗
dR(X,D, f) is defined by a “logarithmic” de Rham complex with twisted differential. If

D = ∅, for instance, H∗
dR(X,f) is defined as the hypercohomology of the complex

0→ OX
d+df
ÐÐ→ Ω1

X

d+df
ÐÐ→ Ω2

X → ⋯

Similarly, Hi(X(C),D(C), f ;Q) is abusive notation for a modification of singular cohomology,
defined (roughly) via smooth chains γ on X(C) with boundary in D(C), such that e−f is of
rapid decay along γ (so integrating e−f along γ behaves well). Let P′′exp denote the subring of
C consisting of this redefinition of exponential periods.

I think that Pexp = P′′exp, but I couldn’t find a reference. My personal takeaway from this dis-
cussion (esp. Example 20) is that by considering square roots of the fundamental element/Tate
motive ξ ∈ PKZ, which in turn is naturally related to replacing the study of algebraic varieties
X with the study of pairs (X,f) where f ∶ X → A1 is a regular function on X, one naturally
ends up in the realm of exponential periods.
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