def is_perfectoid (X : CLVRS) : Prop := $\forall x : X, \exists (U : \text{opens } X) (A : \text{Huber_pair}) [\text{perfectoid_ring } A],$ $(x \in U) \land (\text{Spa } A \equiv U)$

—The definition of a perfectoid space in Lean

The Trivial Notions Seminar Proudly Announces

The Calculus of Constructions

A talk by Grant Barkley

Abstract

I'll tell you how saying "A is of type B" can encode all of modern mathematics, and why a mathematician might want to do such a thing. An introduction to dependent type theory with inductive constructions and how the Lean/Coq theorem provers use it.

Friday, October 23rd, at 12 noon