The Trivial Notions Seminar Proudly Announces

Transcendental Galois theory and motives

A talk by Tom Lovering

Abstract

What should be the Galois closure of $\mathbb{Q}(\pi)$? One way to answer this question might be to remark that there is an 'irreducible-looking' power series

$$\frac{\sin z}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \dots = \prod_{n \in \mathbb{Z}, n \neq 0} (1 - \frac{z}{n\pi}),$$

which should play the role of the irreducible polynomial witnessing that $Q(\pi)$ is itself Galois and with Galois group something like \mathbb{Q}^* (it should permute the roots, but the automorphism taking $\pi \mapsto n\pi$ had better have inverse taking $\pi \mapsto (1/n)\pi$).

In this talk we will explain that although naively following the idea above fails badly, in the case where the transcendental numbers in questions are periods: numbers naturally arising from integration on algebraic varieties defined over number fields, then Grothendieck's theory of motives together with his conjecture on the transcendence of periods give a well-defined and practical answer to such questions with deep implications for transcendental number theory.

Thursday, November 13th, at 1:15 pm Science Center 222