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Abstract

Molecular dynamics (MD) is a popular molecular simulation method often used in bio-
chemistry, drug discovery, and materials science. It numerically integrates Newton’s sec-
ond law for a Hamiltonian H determined by a force field, an energy function on the par-
ticles in the simulation, and computes condensed phase properties by evaluating a time
average of these properties over the simulation. There are three major sources of error in
MD simulations: sampling error, due to not running the simulation infinitely long, time
discretization error, due to numerical integration of Newton’s second law, and force field
error, due to modeling a quantum-mechanical molecular system with a classical force
field. We demonstrate that under certain nice conditions, sampling and time discretiza-
tion error are bounded by OpT´1 ` h2q, where T is the length of the simulation and h is
the step size. Force-field error is more difficult to bound; we examine the assumptions
required to derive a force field and provide a rigorous derivation of a bound on nuclear
quantum effects, or effects arising from quantum-mechanical properties of the nucleus.
We also present an introduction to force-field functor theory, a method of accounting for
nuclear quantum effects in force fields. The results of this thesis will help scientists un-
derstand when MD simulations can be trusted to provide reliable results.
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Chapter 1

Introduction

1.1 Molecular Dynamics
1.1.1 Why Molecular Dynamics?
One of the fundamental goals of chemistry is to accurately predict the behavior of molecules,
whether it be in reactions, binding interactions, solutions, or other forms. Computational
chemistry seeks to tackle this challenge by simulating the behavior of these molecules on a
computer. Such simulations, if fully accurate, can complement experimental approaches:
they can allow scientists to better understand reaction mechanisms, they can help sci-
entists make predictions about molecular behavior without consuming large quantities
of expensive chemicals, and they can aid engineers in rational design of materials with
particular properties [39].

The focus of this thesis is molecular dynamics (MD), one of the most popular simu-
lation methods due to its relative accuracy and low computational cost [16]. Molecular
dynamics has seen application in a wide variety of fields, ranging from drug discovery to
material science. It was initially developed as a method to simulate the behavior of liq-
uids and gases of a single molecule, like water or carbon dioxide, and predict their prop-
erties. Such simulations were soon expanded to simulations of crystalline substances, of
mixtures of liquids, and of solutions [1]. These simulations have helped material scien-
tists predict properties of materials, like conductivity, density, or solubility, and design
materials with certain desired properties.

MD simulations have proven even more important in biomedical research. The field of
structural biology uses structural changes in biomolecules to understand and make pre-
dictions about their function; MD simulations have proven an invaluable complement to
experiment in this field to better understand the behavior of large biomolecules. For ex-
ample, MD simulations have found conformational changes in the shape of proteins that
could not be observed in experiments; these conformations were crucial to understanding
the behavior and function of those proteins. MD simulations have also been able to model
the transport of small molecules through proteins, like those found on the membranes of
cells [16].

The most practically useful application of MD simulations is in the prediction of bind-
ing between proteins and small molecules, or ligands. MD simulations that model and
predict these ligand-protein interactions can then identify drug candidate molecules that
would inhibit the activity of drug target proteins. Such simulations have been used in
the process of drug discovery, especially since simulations are significantly cheaper and
more efficient than the corresponding experimental techniques [16]. MD simulations can
also similarly be used to design larger molecules, up to and including proteins, which has

1



CHAPTER 1. INTRODUCTION 2

further therapeutic applications in fields like immunotherapy [16].
While MD simulations have a great deal of potential, they, like all computational sim-

ulation methods, are hampered by unavoidable errors. MD simulations make a number
of approximations, since a totally accurate simulation of a molecular system is at present
computationally impractical [1]. Mathematically understanding the errors in MD simula-
tions, and thus errors in observables predicted by MD simulations, is crucial for scientists
who use these simulations. Today, many scientists are unwilling to trust the results of MD
simulations without independent experimental verification since the errors are often too
high [16]. Bounding and understanding these errors would make MD simulations much
more powerful and useful [16]. Thus the focus of this thesis will be on bounding the error
in observables measured from MD simulations.

1.1.2 What is Molecular Dynamics?
1.1.2.1 Force Fields and Integrators

We begin with a brief overview of how the MD simulation algorithm works. MD assumes
that all particles in the simulation behave classically, so they move according to Newton’s
second law

~Fp~qq “ m:~q (1.1)

where ~F is the force, ~q is the position of our particle, and m is the mass of our particle.
Particles in the context of MD simulations generally refer to the nuclei of the atoms. The
goal of our simulation is to compute the trajectory of our particles, or the path~qptq for all
particles. We will often also compute the momentum ~pptq “ m 9~qptq of all particles [1].

Equation 1.1 is a system of N coupled second-order differential equations given that
there are N particles. Obviously, an analytic solution to these differential equations is
virtually impossible, so MD simulations will numerically integrate over time in order to
compute the trajectory. Numerical integration requires a choice of small time step h and
of integrator to compute~qpnhq given~qp0q, . . . ,~qppn´ 1qhq. The most popular integrator is
the Störmer-Verlet method, which we introduce in Chapter 2 [1].

We also need to compute the force ~Fp~qq as a function of particle position. This is ap-
proximated through a force field. Most force fields are actually written in terms of the
potential energy Vp~qq; one may then compute the force by taking ~Fp~qq “ ´~∇Vp~qq. These
potential functions are typically approximated as additive functions with some of the fol-
lowing terms:

1. Bond stretches between bonded atoms with displacement~r, modeled as harmonic
terms

Vp~rq “
1
2

kp~r´~r0q
2

for constant k,~r0.

2. Bond angles between pairs of bonds with angle θ between them, modeled as har-
monic terms

Vpθq “
1
2

kpθ´θ0q
2

for constant k,θ0.
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3. Bond torsions between a series of three bonds with dihedral angleφ between them,
modeled as a low-order Fourier expansion

Vpφq “ c0 ` c1 sinφ` c3 sin 3φ` c5 sin 5φ

for constant c0, c1, c3, c5.

4. Medium-range van der Waals repulsion terms between any two atoms at distance
r, modeled as

Vprq “
A

r12 ´
B
r6

for constants A, B.

5. Long-range electrostatic interactions between any two charged atoms with charges
q1, q2 at distance r, modeled by Coulomb’s law as

Vprq “ ´
1

4πε0

q1q2

r

with ε0 the vacuum permittivity.

More modern force fields have many more complicated terms, but the basic idea remains
the same: we have some sum of some number of terms with constants. These constants
are generally fixed by fitting to either experimental or quantum mechanical data [35].
Chapters 5 and 6 provide details about how force fields are typically derived.

Once the force field and integrator are selected, the basic structure of an MD simula-
tion is very simple:

1. Initialize the system (typically to a representative conformation).

2. At each time step, compute the forces using the force field.

3. Use the integrator to compute positions at the next time step.

1.1.2.2 Observables

In order to ensure that the MD simulation accurately represents reality, there are a few
additional steps that must be taken. First, the initial conditions must be realistic. We
typically avoid boundary effects in our system by simulating a torus T3 instead of a fixed-
size box. Practically speaking, this simply means that particles exiting one side of the box
will enter the opposite side. Selecting initial conditions beyond the periodic box is done
on a case-by-case basis [1].

Second, we note that the simulation algorithm outlined above automatically conserves
energy and volume, since all forces are defined in terms of a potential and we are sim-
ulating particles inside a box of fixed size. This algorithm represents an NVE simula-
tion, since it conserves N, particle number, V, the volume of the box, and E, the total
energy. Experimental conditions under which measurements are taken rarely conserve
these quantities; they usually conserve temperature and pressure instead. Thus we would
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prefer to run an NVT simulation (conserving temperature T instead of energy E) or an
NPT simulation (conserving pressure P instead of volume V).

We do this by using Monte Carlo moves. Specifically, if we want to conserve tem-
perature T, after each stage, we run a brief Monte Carlo simulation step to perturb all
the particle’s energies; if we want to conserve pressure P, we perturb the box’s volume.
The probabilities of these moves being accepted depends on the desired temperature T or
pressure P. This method allows us to essentially reduce the NPT or NVT simulation to an
NVE simulation; further, since Monte Carlo methods are well-known to converge in the
long-time limit, this method adds essentially no error to our analysis. Thus we will focus
on NVE simulations for most of this thesis, knowing that our results will also apply for
the more experimentally useful NVT or NPT simulations [1].

We may now compute an observable A. For this thesis, we will assume that A is a
function of the position~q and momentum ~p of all the particles. Thus our simulation, after
running for a time T “ nh, will compute our observable by averaging over all frames in
our trajectory

xAyRie
pTq “

1
n

n
ÿ

i“0

Ap~qpihq,~ppihqq. (1.2)

Note that our trajectory here is determined by simulation on an approximate force field.
Our experiment will measure this observable also by averaging, but experiments gener-
ally run for much longer than simulations do and thus explore many many more configu-
rations. We generally assume that experiments explore essentially all accessible configu-
ration space, where accessible means that quantities that must be conserved (like energy)
are conserved. This assumption is valid since experiments involve a large number of
particles in a macroscopic system that are randomly distributed over all accessible con-
figuration space; we call such averages ensemble averages. So we have

xAy “
ż

M
Ap~p,~qq d~p d~q (1.3)

where M is the manifold corresponding to the accessible configuration space that we
integrate over. Here, our manifold M is determined by experiments run on the actual
physical system, not the approximate force field. Physical intuition leads us to believe
that xAyRie

pTq and xAy are close to each other since a randomly initialized system over
long periods of time T should explore all of configuration space. We will define xAyRie

pTq
and xAy more precisely and gain a better understanding of the difference between them
in this thesis.

The fundamental question we seek to answer in this thesis is the following: Are the
quantities xAyRie

pTq and xAy as defined above close to each other? Can we derive
bounds on how close they are to each other?

1.2 Structure of this Thesis
1.2.1 Sources of Error
Broadly speaking, there are three major sources of error that are found in MD simulations
and contribute to the difference between xAyRie

pTq and xAy [4]:
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1. Sampling error. This results from the fact that we truncate our simulation at some
finite time T instead of letting our simulation run until T “ 8. The size of sampling
error depends on our integrator and the length of the simulation T.

2. Time discretization error. This results from the fact that we choose to numerically
integrate Newton’s second law with some finite time step h instead of analytically
solving Newton’s second law with an infinitesimal time step. The size of time dis-
cretization error depends on our integrator and the size of the time step h.

3. Force field error. This error refers to any error that is a result of inaccuracies in our
force field, not inaccuracies in our integrator. Fundamentally, it results from the fact
that molecular systems are quantum mechanical and MD simulations model them
classically, which requires that some approximations be made in order to consider
quantum effects.

The goal of this thesis is to present mathematically proven bounds on these errors.
Bounding these errors in general in an MD simulation is still an open problem, so the
results we present here only cover a small number of cases that comply with some sim-
plifying conditions. We also provide an exposition to what progress needs to be made to
understand these error terms and which errors are considered to be more or less impor-
tant for accurate simulations.

1.2.2 Key Results of this Thesis
In Chapter 2, we present important properties of the primary integrator of an MD simu-
lation, the Störmer-Verlet method, and show that its properties guarantee that energy is
conserved over polynomial times in Theorem 2.2.3. This result, while not a bound on the
error terms listed above, is still important since it reassures us that energy is conserved in
an NVE simulation, as expected.

In Chapter 3, we assume that our system is completely integrable, derive impor-
tant properties of completely integrable systems including the Arnold-Liouville Theorem
(Theorem 3.1.9), and explain why MD simulations are likely to be close to completely in-
tegrable. We then use these results to bound sampling error to OpT´1q in Theorem 3.2.2
and demonstrate that the use of a filter function allows sampling error to be bounded by
an exponentially decaying function in T in Theorem 3.2.3.

In Chapter 4, we introduce perturbation theory and use it to derive bounds on time
discretization error. The key result here is aOpT´1` h2q bound on time discretization and
sampling error in Theorem 4.2.2. This theorem summarizes the error bounds that result
from the integrator.

In the last two chapters of this thesis, we focus on force field error. This is a broad
field, so we focus on a few key mathematically proven results and on developing some
physical intuition behind common sources of force field error. In Chapter 5, we provide
a brief overview of quantum mechanics as applied to molecular systems and then de-
scribe the Born-Oppenheimer approximation, the key result allowing us to approximate
quantum mechanical systems using MD simulations with classical force fields. In Section
5.2.2, we qualitatively describe a number of the sources of error associated with Born-
Oppenheimer force fields.
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The final sections of this thesis focus on nuclear quantum effects, the subject of my
own research. While these are not necessarily the largest source of error in force field
development, results about nuclear quantum effects affect almost every force field de-
veloped. We begin this discussion by proving a complicated bound on nuclear quantum
effects in Born-Oppenheimer force fields in Theorem 5.2.1; this bound makes clear that
as long as nuclei have finite mass, nuclear quantum effects will contribute an error term
that does not vanish. In Chapter 6, we introduce force-field functor theory, a way of ac-
counting for nuclear quantum effects in Born-Oppenheimer force fields. Theorem 6.1.1
tells us that it is always possible to derive an effective force field that accounts for nuclear
quantum effects and Section 6.2.1 provides an efficient means of computing this effective
force field along with empirical justification of its effectiveness.



Chapter 2

The Störmer-Verlet Method and Energy Con-
servation

We begin by introducing the primary integrator used in MD simulations, the Störmer-
Verlet method. Newton’s second law from Equation 1.1 is a second order differential
equation of the form

:~q “ f p~qq

for some function f (the force divided by mass) and some position-space vector ~q with
dimension equal to the number of degrees of freedom. For simplicity, focus on the one-
dimensional case :q “ f pqq for now. Introduce the velocity 9q “ v, so our equation is a
coupled system

9v “ f pqq
9q “ v.

The space defined by pv, qq (or the corresponding space defined by pp, qq for p “ mv) is
known as the phase space [25].

Now discretize our system with timepoints tn “ nh (for some small step size h and n a
positive integer) and corresponding positions qn and velocities vn (here the indexing cor-
responds to timesteps). We may now evolve Φ : pqn, vnq ÞÑ pqn`1, vn`1q by the following
three steps:

vn` 1
2
“ vn `

h
2

f pqnq

qn`1 “ qn ` hvn` 1
2

vn`1 “ vn` 1
2
`

h
2

f pqn`1q.

(2.1)

See Figure 2.0.1a. Here, we introduce staggered timepoints tn` 1
2
“

`

n` 1
2

˘

h. There is a
dual option to Equation 2.1 where we switch the roles of v and q:

qn “ qn´ 1
2
`

h
2

vn´ 1
2

vn` 1
2
“ vn´ 1

2
` h f pqnq

qn` 1
2
“ qn `

h
2

vn` 1
2

(2.2)

See Figure 2.0.1b. Now observe that we may simply concatenate the last and first steps of
both methods in Equations 2.1 and 2.2 together. This gets us the Störmer-Verlet method.

7
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(a) One Symplectic
Integrator. (b) Its Dual.

Figure 2.0.1: Motivation for Störmer-Verlet. Taken from Hairer et al. [25].

Definition 2.0.1. The Störmer-Verlet method is the map Φh : pqn, vn´ 1
2
q ÞÑ pqn`1, vn` 1

2
q

such that:
vn` 1

2
“ vn´ 1

2
` h f pqnq

qn`1 “ qn ` hvn` 1
2

(2.3)

The formula above can be trivially generalized to multiple dimensions.
This is the primary integrator of choice for MD simulations, both because of its ease

of implementation and its multitude of nice properties that allow reasonably fast conver-
gence of these simulations. Our goal for this chapter will be to show that the Störmer-
Verlet method belongs to a class of integrators called symplectic integrators, which con-
serve energy over long timescales [25]. For a comparison of this method with others, see
Hairer et al. [26], Arnold [2].

2.1 Symplecticity
2.1.1 Hamiltonian and Lagrangian Mechanics
Our system of differential equations is a special one determined by Newton’s second law.
Thus we have some important additional properties, deriving from the Lagrangian and
Hamiltonian formalism of classical mechanics.

We may write

K “
1
2

9~q ¨ pMp~qq 9~qq

for K the kinetic energy and Mpqq the mass matrix, which will always be symmetric and
positive-definite. We are also given a force field, a potential energy function U “ Upqq.
The Lagrangian is then

L “ K´U

and the Euler-Lagrange equations stipulate

d
dt

˜

BL

B 9~q

¸

“
BL
B~q

(2.4)

which in our case imply Newton’s second law in Equation 1.1.
We may now define the conjugate momenta

~p “
BL

B 9~q
p~q, 9~qq “ Mp~qq 9~q
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for all i and the Hamiltonian

Hp~p,~qq “ ~p ¨ 9~q´ Lp~q, 9~qq “
1
2
~p ¨ pMp~qq´1~pq `Up~qq.

This is the total energy of our system, and it is well-known that it is conserved on any
trajectory [26]. Further:

Theorem 2.1.1. The Euler-Lagrange equations in Equation 2.4 are equivalent to the Hamiltonian
equations of motion

9pk “ ´
BH
Bqk
pp, qq, 9qk “

BH
Bpk

pp, qq. (2.5)

Proof from Arnold [2]. Observe that

BH
Bqk

“
B

Bqk
p~p ¨ 9~q´ Lp~q, 9~qqq “ ´

BL
Bqk

and similarly BH
Bpk

“ 9qk. The second is directly one of Hamilton’s equations of motion; the
first simply requires applying the definition of momentum.

For the other direction,

BL
Bqk

“
B

Bqk
p~p ¨ 9~q´ Hp~p,~qqq “ 9~p “

d
dt

˜

BL

B 9~q

¸

as desired.

2.1.2 Symplectic Structures on Manifolds
Flows in phase space along the Hamiltonian equations of motion satisfy an additional
important property known as symplecticity. Over the next few sections, we will see that
symplecticity corresponds to preserving areas in phase space under Hamiltonian flows.

Symplecticity can be defined on any 2d-dimensional manifold M. For future conve-
nience and to simplify proofs of a number of important results, I will define symplecticity
in complete generality and avoid specializing to R2d until absolutely necessary.

Definition 2.1.2. A symplectic structure on M is a closed nondegenerate differential 2-
formω, i.e. dω “ 0 and for all ~v ‰~0 there exists ~w such thatωp~v, ~wq ‰ 0.

Example 2.1.3. The canonical example of a symplectic structure, and the one we will be
most interested in, is the following. Consider phase space R2d with coordinates pi, qi.
Thenω “

ř

i dpi ^ dqi is symplectic. This can be easily verified directly.

We can understand the above example more generally. Consider V, an d-dimensional
manifold. It is well-known that T˚V, the cotangent bundle, is a 2d-dimensional differen-
tiable manifold. If we choose coordinates qi for points in V, we can choose corresponding
coordinates pi for any cotangent vector in T˚x V given a point x P V, and thus have coordi-
nates pi, qi for all of T˚V. Thus the symplectic structureω defined above can be naturally
extended to T˚V [2].



CHAPTER 2. THE STÖRMER-VERLET METHOD AND ENERGY CONSERVATION 10

Now fix a point x P V. We may define a map I : TxM Ñ T˚x M by sending ~v ÞÑ

ι~vpωq “ ω~v where ω~vp~wq :“ ωp~v, ~wq; this corresponds to the interior product. I is an
isomorphism because symplectic forms are nondegenerate. Thus given a Hamiltonian
function H : M Ñ R, we have a differential 1-form dH and a corresponding vector field
H associated with it, known as the Hamiltonian vector field [2].

Example 2.1.4. Let’s calculate what this isomorphism looks like in R2d. Given a basis
vector epi it maps to ωpip~wq :“ ωp~epi , ~wq “ dqip~wq thus we have ωpi “ dqi. Similarly,
ωqip~wq :“ ωp~eqi , ~wq “ ´dpip~wq thus we haveωqi “ ´dpi. The matrix of the appropriate

transformation in the pi, qi basis is
ˆ

0 I
´I 0

˙

where I is the d-dimensional identity matrix.

Now suppose we have a Hamiltonian H. Then

H “
ÿ

i

~epi

BH
Bqi

´
ÿ

i

~eqi

BH
Bpi

so the corresponding flow equation 9x “ Hpxq allows us to re-derive Hamiltonian dynam-
ics.

Thus our notion of Hamiltonian dynamics agrees with Hamiltonian vector fields (hence
the name).

2.1.3 Hamiltonian Flows are Symplectic
Given a symplectic manifold M and a Hamiltonian function H, the corresponding Hamil-
tonian vector field H generates a Hamiltonian phase flowϕt : M Ñ M such that

ϕ0pxq “ x,
d
dt
ϕtpxq “ Hpϕtpxqq.

This phase flow simply tracks the evolution of our system in phase space. The importance
of symplecticity is that:

Theorem 2.1.5 (Poincaré). The Hamiltonian phase flow is symplectic, or preserves the sym-
plectic structure of the manifold, i.e. pϕtq

˚ω “ω.

If we work in 1 dimension with M “ R2, this theorem implies that the phase flow
preserves the area in phase space. In higher dimensions with M “ R2n, this theorem is
equivalent to preserving the area under projection to the ppi, qiq plane, i.e. the phase space
for each individual coordinate.

Proof from Arnold [2]. Observe thatϕt defines a homotopy trivially. Given a manifold M
and a k-chain c on it, define a pk` 1q-chain ϕc, the track of chain c under the homotopy
ϕt for t P r0, τs. For each cell in this chain f : D Ñ M, take the map g : D ˆ r0, τs Ñ M
defined by gpx, tq “ϕtp f pxqq and add the appropriate orientation, soϕc is swept out by c
under the homotopyϕt for t P r0, τs. We may compute

Bpϕcq “ϕτc´ c´ϕBc.
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Lemma 2.1.6. Given a 1-chain c, we have

d
dt

ż

ϕc
ω “

ż

ϕτ c
dH.

Proof. Pick a chain with one cell f : r0, 1s Ñ M. Let gps, tq “ ϕt f psq,~v “ Bg
Bs , ~w “

Bg
Bt in the

tangent space Tgps,tqM. Then

ż

ϕc
ω “

ż 1

0

ż τ

0
ωp~v, ~wq dt ds

but by the definition of Hamiltonian phase flow we have ~w “ Hpgps, tqq so ωp~v, ~wq “
dHpvq. Thus

ż

ϕc
ω “

ż τ

0

ˆ
ż

ϕτ c
dH

˙

dt.

We can now differentiate to get the result.

Now given any 2-chain c, we have

0 “
ż

ϕc
dω “

ż

Bϕc
ω “

ż

ϕτ c
ω´

ż

c
ω´

ż

ϕBc
ω

by Stokes’s theorem. We know that
ż

ϕBc
ω “

ż τ

0

ˆ
ż

ϕτBc
dH

˙

dt “
ż τ

0

ˆ
ż

BϕτBc
H
˙

dt “ 0

by Lemma 2.1.6 so we get
ż

ϕτ c
ω´

ż

c
ω “ 0.

Since this must be true on any chain, we have pϕtq
˚ω “ω.

Let’s consider the reverse condition: are flows that preserve the symplectic structure
Hamiltonian? This isn’t quite always true; consider the torus T2 with coordinates pp, qq
and ω “ dp ^ dq. Consider ϕtpp, qq “ pp ` t, qq; this clearly preserves the symplectic
structure. We can see that we require H “ ´q` C but q is only a local coordinate, so this
can’t hold globally.

However, we can prove something local.

Definition 2.1.7. A locally Hamiltonian vector field is a vector field α corresponding
under I to a closed 1-formα.

Locally, we may writeα “ dH by Poincaré’s lemma and we have a local Hamiltonian
function, but this may not hold globally. Then we have:

Theorem 2.1.8. A flowϕt preserves the symplectic structure iff it is locally Hamiltonian.
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Proof from Pelayo [46]. The backwards direction is immediate from Poincaré’s theorem,
Theorem 2.1.5, since the proof of that was entirely local.

For the forwards direction, suppose we have such a flowϕt. Now consider the vector
field d

dtϕtpxq. Under I this maps to some α such that αpvq “ ω
´

d
dtϕtpxq, v

¯

. Now pre-
serving the symplectic structure implies that the Lie derivative £ d

dtϕtpxq
ω “ 0, so by the

formula £v “ d ˝ ιv ` ιv ˝ d, we get thatα is closed, as desired.

We can further see that the obstruction to a symplectic flow from being globally Hamil-
tonian corresponds directly to closed forms that are not exact, i.e. to the first cohomology
group H1pM,Rq. On any simply connected manifold, i.e. M “ R2d, this is just 0, so all
flows that preserve the symplectic structure are Hamiltonian [46, 2].

2.1.4 Symplecticity of the Störmer-Verlet Method
Since the flow of our Hamiltonian system is symplectic, we would like to verify that the
numerically computed flow of our system via the Störmer-Verlet method is also symplec-
tic. As it turns out, this is case:

Theorem 2.1.9. The flow of the Störmer-Verlet method Φh on a Hamiltonian system is symplectic.

This theorem is true for general Hamiltonians [25], but the elegant proof we present
holds only in the case that the Hamiltonian is separable Hpp, qq “ Kppq`Upqq. This is the
case for all force fields.

Proof from Hairer et al. [25]. LetϕK
h be the accurate flow of the Hamiltonian system Hpp, qq “

Kppq over a time step h and likewise for ϕU
h . Observe that Equation 2.1 implies that

Φh “ ϕU
h
2
˝ϕK

h ˝ϕ
U
h
2

. By Theorem 2.1.5, each of the ϕs is symplectic, so so is Φh. Since

this is equivalent to Störmer-Verlet with some slight index modifications, we have that
the flow of the Störmer-Verlet method is also symplectic.

2.2 Backward Error Analysis
The primary tool for analyzing errors associated with the Störmer-Verlet method and
other methods of numerically integrating differential equations is backward error anal-
ysis. In this section, we will use backward error analysis on the Störmer-Verlet method
to derive bounds on long-time energy conservation; later in Chapter 4, we will use it to
bound time discretization error.

Suppose we have an exact differential equation 9x “ f pxq with solution ϕtpxq. The
numerical solution is xn with xn`1 “ Φhpxnq. The idea of backward error analysis is to
find a modified differential equation

9
rx “ fhprxq “ f pxq ` h f2pxq ` h2 f3pxq ` . . . (2.6)

and determine the difference between f and fh. This gives more insight into the error of
the trajectory xn. We can demonstrate existence of this series, but we do not guarantee its
convergence.
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Theorem 2.2.1 (Backward Error Analysis Series Existence.). Consider the equation 9~x “ f p~xq
over some vector ~x and infinitely differentiable vector field f p~xq. If the numerical method has a
Taylor expansion

Φhp~xq “ ~x` h f p~xq ` h2g2p~xq ` h3g3p~xq ` . . .

then there exist unique vector fields fipxq such that

Φhp~xq “ rϕh,Np~xq `OphN`1
q

and rϕh,N is the flow of the modified equation

9~x “ f p~xq ` h f2p~xq ` . . .` hN´1 fNp~xq. (2.7)

This proof is written for the one-dimensional case for simplicity, but the ideas can be
easily extended to higher dimensions.

Proof from Hairer et al. [25]. Define rxptq “ rϕtpxq. We can now expand the flow of Equation
2.6 as a Taylor series to get

rϕhpxq “ x` h 9
rxp0q `

h2

2!
:
rxp0q ` . . .

“ x` h
´

f pxq ` h f2pxq ` h2 f3pxq ` . . .
¯

`
h2

2!
`

f 1pxq ` h f 12pxq ` . . .
˘

p f pxq ` h f2pxq ` . . .q

and comparing like powers with the given equations we get

f2pxq “ g2pxq ´ f 1 f pxq

and so on.

Given this proof, observe that if our numerical method is of order p, i.e.

Φhp~xq “ϕhp~xq ` hp`1δp`1p~xq `Ophp`2
q

whereϕhp~xq is the exact flow and δp`1pxq is the leading-order correction, then f jpxq “ 0
for 2 ď j ď p.

Explicit computation for the Störmer-Verlet method [25] gets

Φhp~q,~vq “

˜

~q` h~v` h2

2 f p~qq
~v` h

2 f p~qq ` h
2 f

´

~q` h~v` h2

2 f p~qq
¯

¸

so

f2p~q,~vq “ 0, f3p~q,~vq “
1

12

ˆ

´2 f 1p~qq~v
f 1p~qq f p~qq ` f 2p~qqp~v,~vq

˙

, f4p~q,~vq “ 0.

It can be verified that the Störmer-Verlet method has order 2, so these results agree with
what we expect [25].

Note that Störmer-Verlet is symmetric, i.e. Φh “ Φ´h. Thus our expansion must also
have this property, implying that even powers f2 jp~q,~vqwill vanish [25].
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2.2.1 Symplectic Methods and Backward Error Analysis
Symplectic methods have particularly nice modified differential equations. Specifically,
they will also be symplectic and thus also have modified Hamiltonians.

Theorem 2.2.2. A symplectic method Φh applied to a Hamiltonian system with a smooth Hamil-
tonian H results in a modified equation that is also Hamiltonian, i.e. each truncated equation from
Equation 2.7 is also Hamiltonian for some H j.

Proof from Hairer et al. [26]. Induct on j. The base case is immediate since f p~xq “ f1p~xq.
For the inductive step, note that

9
r~x “ f pr~xq ` h f2p

r~xq ` . . .` hr´1 frpr~xq

is Hamiltonian by induction. Let its flow beϕr,hp~x0q. We have

Φhp~x0q “ϕr,hp~x0q ` hr`1 fr`1p~x0q `Ophr`2
q

and taking the derivative

Φ1hp~x0q “ϕ
1
r,hp~x0q ` hr`1 f 1r`1p~x0q `Ophr`2

q.

Note that Φh and ϕr,h are symplectic by induction and using Theorem 2.1.5. Further,
ϕ1r,hp~x0q “ I `Ophq by definition. We claim that fr`1 is symplectic, i.e. ωp f 1r`1~v, f 1r`1~wq “
ωp~v, ~wq. This is immediate by expanding the equation above and taking terms to the hr`1

order. Now, apply Theorem 2.1.8 to get the desired.

2.2.2 Bounds on Energy Conservation
This set-up is sufficient for us to prove a significant result on how closely energy is con-
served under the Störmer-Verlet method.

Theorem 2.2.3. Given fixed step size h and number of steps n, let the time t “ nh. Then there
exist constants C and CN independent of t and h such that

|Hp~pn,~qnq ´ Hp~p0,~q0q| ď Ch2
` CNhNt

if 0 ď t ď h´N for some positive integer N. CN depends on up to the pN ` 1qth order derivative
of H in a region containing p~pn,~qnq.

Proof from Hairer et al. [25]. Truncate our modified differential equation after N terms. Ap-
ply Theorem 2.2.2 to get a modified Hamiltonian rHp~p,~qq associated with the Störmer-
Verlet method. By the Triangle Inequality, we have

|Hp~pn,~qnq´Hp~p0,~q0q| ď |Hp~pn,~qnq´ rHp~pn,~qnq|` | rHp~pn,~qnq´ rHp~p0,~q0q|` | rHp~p0,~q0q´Hp~p0,~q0q|.

The first and third terms are bounded by the error in the modified Hamiltonian. Recall
that the Störmer-Verlet method has order 2; this gives us a Oph2q error in the proof of
Theorem 2.2.2. Thus we have

|Hp~pn,~qnq ´ rHp~pn,~qnq| ` | rHp~p0,~q0q ´ Hp~p0,~q0q| ď Ch2
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for some fixed constant C.
Rewrite the last sum by the Triangle Inequality as

| rHp~pn,~qnq ´ rHp~p0,~q0q| ď

n
ÿ

i“1

| rHp~pi,~qiq ´ rHp~pi´1,~qi´1q|.

Our modified flow rφt preserves the modified Hamiltonian, so

| rHp~pi,~qiq ´ rHp~pi´1,~qi´1q| “ | rHp~pi,~qiq ´ rHprφhp~pi´1,~qi´1qq| ď CNhN`1

since by construction rφhp~pi´1,~qi´1q “ p~pi,~qiq `OphN`1q. CN here is clearly only depen-
dent on up to the pN ` 1qth order derivative of H, since that’s all the modified differ-
ential equation is dependent on. Adding up all n terms, we get a bound of CNhNt, as
desired.

This is not the sharpest possible bound; you can show that for analytic Hamiltonians
H (all Hamiltonians used in molecular dynamics simulations) we have a bound of Ch2 `

C0e´
c
h t for exponentially long times t ď e

c
h .

However, the exact bound is unimportant for applications to simulations. The im-
portant result of the theorem is that energy is approximately conserved over long time
periods. As a result, scientists running NVE MD simulations are guaranteed that energy
will actually be conserved over the course of their simulation, so the simulated trajectories
will be representative of the real world [1]. Symplecticity of the Störmer-Verlet method is
essential for this result to hold; in particular, non-symplectic methods such as the Euler
method fail to conserve energy and can lead to nonsensical results in simulation, such as
a harmonic oscillator’s trajectory becoming totally unbounded [26].

This result provides a sanity check on the expected accuracy of our simulations, but it
does not tell us anything about the bounds we expect on errors in observable quantities
measured from a simulation. We turn to that subject next, but we’ll need a few further
assumptions on our system to make progress.



Chapter 3

Integrable Systems and Bounds on Sam-
pling Error

The goal of this chapter will be to compute bounds on sampling error, which can be
defined as the between the time average

xAy pTq “
1
T

ż T

0
Ap~pptq,~qptqq dt

and the spatial average xAy. We begin with a discussion of the motivation behind our ap-
proach and how it differs from some other approaches taken by computational scientists
using simulations.

The most natural way to compare time and spatial averages of simulated systems is by
citing the ergodic hypothesis. The version of the ergodic hypothesis we will use from [18]
is occasionally called the quasi-ergodic hypothesis or the modified ergodic hypothesis:

Conjecture 3.0.1 (Ergodic Hypothesis). The trajectory of a system is dense on its energy surface
as a subset of phase space (the space of all possible positions and momenta of all particles).

The ergodic hypothesis immediately leads to the conclusion that time averages at in-
finite time and spatial averages are equal, so time averages should converge to spatial
averages. However, on its own, it doesn’t tell us any information about the rate of that
convergence. Further, it is notoriously difficult to prove that even simple systems are er-
godic; no one has attempted to prove whether a full MD force field applied to a protein
is ergodic. Even the ergodicity of one of the simplest terms in a force field, the Lennard-
Jones term, is an open problem [18].

Known results about ergodic systems make the ergodicity assumption very troubling.
First, the space of ergodic Hamiltonians is meager in the space of all Hamiltonians, i.e.
covered by a union of nowhere dense subsets [36]. This implies that arbitrarily small
perturbations to any ergodic Hamiltonian can result in a non-ergodic Hamiltonian and
that we may have non-ergodic Hamiltonians that are far away from ergodic Hamiltoni-
ans. Thus given that we know nothing about the ergodicity of our force field, assuming
ergodicity does not seem like a good idea.

Further, we have good reason to believe many common force fields are not ergodic.
Systems with multiple-welled potentials are often non-ergodic since they only explore
one of the relevant wells, and all torsion potentials are usually multi-welled (correspond-
ing to rotating a bond around itself, which almost never happens). Systems with a large
number of independent or mostly independent oscillations are rarely ergodic, since each
individual oscillator has additional conserved quantities associated with it beyond the

16
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overall system energy [18]. Many force fields to a first-order approximation assume bonds
are harmonic, so all the bonds in a protein form a system of mostly independent harmonic
oscillators that we do not expect to be ergodic. Thus we have good reason to suspect that
force fields do not satisfy the ergodic hypothesis.

We will instead assume complete integrability, often considered the exact opposite
of ergodicity. We will justify this assumption later. Here we motivate the conditions of
complete integrability.

If we knew ahead of time that the motion of our system were periodic with respect
to any one particular coordinate x, it would be trivial to show that spatial averages with
respect to x and time averages converge to each other; just integrate over a period. How-
ever, most MD simulations are not periodic with respect to any spatial coordinate, and
this method does not allow you to average over any coordinate aside from x.

But consider the 1D harmonic oscillator

Hpp, qq “
1
2
pp2

` q2
q

(setting constants equal to 1 for simplicity). It is well-known that the trajectory of a par-
ticle in this Hamiltonian is ppptq, qptqq “ pr cosθ, r sinθq for some fixed r “

?
2H and

linear function θ. We can change coordinates from pp, qq to pr,θq; now, r is fixed over
our trajectory and we can integrate with respect to θ, a periodic coordinate. Here, the
time average of a function A is 1

T
şT

0 Apr cosθptq, r sinθptqq dt and the spatial average is
1

2π

ş2π
0 Apr cosθ, r sinθq dθ which are clearly equal as long as T is a multiple of the period.

In this process, we have transformed our system from non-periodic coordinates to pe-
riodic coordinates, allowing us to compare spatial and time averages easily. We aim to
repeat this process with more general MD simulations to create periodic coordinates.

The proof outline provided above for the 1-dimensional harmonic oscillator will be the
motivation for the following chapter. We will find ways to construct periodic coordinates
like pr,θq and use them to establish rigorous bounds on sampling error for a subset of
common MD force fields.

3.1 Integrable Systems and the Arnold-Liouville Theorem
In this section, we will define a completely integrable system, prove the Arnold-Liouville
theorem, which characterizes completely integrable systems in terms of periodic coor-
dinates as described previously, and discuss why complete integrability is a reasonable
assumption to make about MD force fields.

3.1.1 Poisson Brackets and First Integrals
We first generalize the notion of a conserved quantity such as the energy of the harmonic
oscillator.

Definition 3.1.1. A first integral of motion is a quantity conserved over the trajectory that
is a function of only phase space coordinates (position and momentum) and is indepen-
dent of time.

Energy, angular momentum, and linear momentum are common examples of first in-
tegrals. Quantities that are only conserved, i.e. independent of time, are generally called
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integrals of motion. We’ll need a slightly more useful characterization of first integrals.
Consider functions f , g : M Ñ R on a symplectic manifold M. Then:

Definition 3.1.2. The Poisson bracket t f , gu is a function h : M Ñ R such that h “ωp f , gq
whereω is the symplectic structure on M and f , g are the vector fields corresponding to
f , g [2].

Example 3.1.3. In our canonical basis, we may compute

t f , gu “
n
ÿ

i“1

Bg
Bpi

B f
Bqi

´
Bg
Bqi

B f
Bpi

.

The Poisson bracket is clearly linear and anti-symmetric by definition. The reason
Poisson brackets are useful for computing first integrals is the following lemma:

Lemma 3.1.4. A function f is a first integral iff we have t f , Hu “ 0, where H is the Hamiltonian.

Proof. We have
t f , Hu “ωp f , Hq “ d f pHq

by unwinding definitions and

d
dt

f pφtpxqq “ d f
ˆ

d
dt
φtpxq

˙

“ d f pHpxqq

by the Chain Rule. Thus t f , Hu “ 0 is equivalent to d
dt f pφtpxqq “ 0 always.

We can also show that
t f , gu “ £g f

(where £ is the Lie derivative) and the Jacobi identity holds for Poisson brackets, i.e.

t f , tg, huu ` tg, th, f uu ` th, t f , guu “ 0.

Finally, the Poisson bracket is related to the Lie bracket by the identity

t f , gu “ r f , gs.

As a result, if t f , gu “ 0, the flows with respect to f and g commute. We say that such f
and g are in involution. These results are proven in Arnold [2].

3.1.2 Liouville’s Theorem
Liouville’s theorem gives us a very nice description of a manifold with multiple first in-
tegrals. The proof of this theorem will be the focus of this section.

Theorem 3.1.5 (Liouville’s Theorem). Given a symplectic 2n-dimensional manifold M, sup-
pose that we have n functions f1, . . . , fn such that f1 “ H, our Hamiltonian, t fi, f ju “ 0 for all
i, j (in particular fi is a first integral for i ‰ 1), and given a level set M~g “ tx | fipxq “ gi@iu for
some constants g1, . . . , gn, the n 1-forms d f1 are linearly independent on M~g, then we have the
following:
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1. M~g is a smooth manifold invariant under phase flow by the Hamiltonian.

2. If M~g is compact and connected, it is diffeomorphic to the n-dimensional torus Tn with
coordinatesϕ1, . . . ,ϕn pmod 2πq.

3. In these coordinates, the phase flow is conditionally periodic

d~φ
dt
“ ~ω

for ~ω a function only of ~g.

We use the term conditionally periodic since the flow is only periodic if all theωis are
related to each other by rational ratios. Otherwise, the flow is quasiperiodic [26]. The M~g
are sometimes called invariant tori.

Definition 3.1.6. A system satisfying the conditions of Liouville’s theorem is known as
completely integrable.

Proof of Liouville’s Theorem from Arnold [2]. We start by proving the first statement. Since
the n 1-forms d fi are linearly independent, by the implicit function theorem, M~g must be
a smooth n-dimensional submanifold.

Lemma 3.1.7. The n vector fields f i defined using the symplectic structureω are tangent to M~g,
commute with each other, and are linearly independent.

Proof from Arnold [2]. Since we have an isomorphism from 1-forms to vector fields, linear
independence of the f i is immediately implied by linear independence of the d fi. The
vector fields commuting follows from t fi, f ju “ 0. Similarly, £ f j

fi “ 0, implying that the

f j are tangent to M~g, as desired.

By Lemma 3.1.7, the f i form a basis for TxM~g at any x P M~g, implying that ω “ 0
on TxM~g since it is 0 on all the f i. Further, we can define flows φi,t corresponding to the
vector field f i and a time t. These flows also commute and M~g is invariant under their
flow. This proves the first statement of Liouville’s theorem.

Now we prove the second statement. Assume M~g is compact and connected. Define
an action of Rn on M~g by sending

~t ÞÑ φ~t : M Ñ M,φ~t “ φ1,t1φ2,t2 . . .φn,tn .

Commutativity of our flows implies that this is a group action. Given any point x0 P M~g,
we have a mapφ : Rn Ñ M~g,φ

`

~t
˘

“ φ~tx0.
By the implicit function theorem applied to the φi,t, some neighborhood V Ă Rn of

the origin maps to an open set U containing x0 diffeomorphically. We claim that φ is
surjective; consider a curve from x0 to any x P M. We can cover this curve by a finite
number of copies of U; each U corresponds underφ to some V and thus each point in the



CHAPTER 3. INTEGRABLE SYSTEMS AND BOUNDS ON SAMPLING ERROR 20

curve corresponds to some shift in V. We now need to add up all of these shifts to get a~t
such thatφp~tq “ x.

However, φ is not injective since M~g is compact. Thus consider the stabilizer of x0;
this is a subgroup Γ . Further, since φ : V Ñ U is a diffeomorphism, V Ć Γ , implying that
Γ is discrete.

It is well-known that all discrete subgroups of Rn correspond to t
ř

i mi~ei | mi P Z u for
some set of k linearly independent vectors ~ei with 0 ă k ď n. We use this to construct a
diffeomorphism between M~g and Tk ˆRn´k. See the following diagram:

Rn Rn

Tk ˆRn´k M~g

A

p φ

rA

Take coordinates on Tk ˆRn´k given by pϕ1, . . . ,ϕk, yk`1, . . . , ynq. Theϕi coordinates
are taken mod 2π . Define p : Rn Ñ Tk ˆ Rn´k to be the natural universal covering
map that sends the first k coordinates to their value mod 2π . Note that by the above
arguments φ : Rn Ñ M~g is also a universal covering map. Now define the points~hi P Rn

with coordinatesϕi “ 2π ,ϕ j “ 0 for all j ‰ i and the isomorphism A : Rn Ñ Rn,~hi ÞÑ ~ei

(extend by linearity if necessary). This isomorphism descends to an isomorphism rA :
Tk ˆRn´k Ñ M~g by the universal cover maps; since the universal cover maps are locally
diffeomorphic, rA is a diffeomorphism.

Recall that M~g is compact. Tk ˆRn´k is compact iff n “ k, implying that we actually
have a diffeomorphism M~g » Tn and have constructed n angular coordinatesϕ1, . . . ,ϕn.
This proves the second statement of Liouville’s theorem. The third statement of Liou-
ville’s theorem is also easy to see; note that by definition ~ϕ “ A´1~t and flowing along the
Hamiltonian corresponds to dt1

dt “ 1, dti
dt “ 0 by definition, so dϕi

dt must be some constant
depending only on ~g as desired.

Liouville’s theorem provides us with angular coordinates given a large number of first
integrals, just as we saw in the motivating example of the harmonic oscillator.

3.1.3 Action-Angle Coordinates
We specialize to the case M “ R2n for this part.

Given a completely integrable system, we may by Liouville’s theorem switch to coor-
dinates p~f ,~ϕqwhere the flow corresponds to

d~f
dt
“ 0,

d~ϕ
dt
“ ~ωp~f q.

These new coordinates are not quite symplectic however, in the sense that we do not
haveω “

ř

d fi^dϕi, which will prove very useful in bounding sampling error. We thus
derive action-angle coordinates p~I,~ϕq, for which

ω “
ÿ

i

dIi ^ dϕi
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does hold. ~I is a function of ~f and thus Ii is also a first integral of our Hamiltonian H [2].

Example 3.1.8. For our harmonic oscillator, action-angle coordinates would be I “ H “

p2`q2

2 . We then observe that

dp^ dq “ r dr^ dϕ “ d
ˆ

r2

2

˙

^ dϕ

so these are indeed action-angle coordinates.

Theorem 3.1.9 (Arnold-Liouville Theorem). For our manifold M “ R2n, there exist action-
angle coordinates.

Proof from Arnold [2]. Let γ1, . . . ,γn be 1-dimensional cycles on M~g that form a basis of
cycles. Define

Iip~gq “
1

2π

¿

γi

~p d~q.

This integral does not depend on choice of γi since given any two γ,γ1 we may define a
cycle σ such that Bσ “ γ ´γ1 and then by Stokes’s theorem

¿

γ

~p d~q´
¿

γ1

~p d~q “
ż ż

σ

ÿ

i

dpi ^ dqi “ 0

sinceω “ 0 on M~g. The Iip~gq are our action variables.
We now need to show that

ÿ

dpi ^ dqi “
ÿ

dIi ^ dϕi.

Note that, as above,

Spxq “
ż x

x0

~p d~q

when restricted to M~g does not change under deformations of the path of integration.
By the fundamental group, it can only change by values corresponding to 2π Ii. Let x0 P

M~g such that we can find a neighborhood where the ~q are coordinates on M~g. In this
neighborhood, we can define a function

Sp~I,~qq “
ż q

q0

~pp~I,~qq d~q.

It’s immediate that
pi “

BS
Bqi

.

Define
BS
BIi

“ϕi.

Thus, at least locally, we have our desired equality by taking second derivatives of S.
This local equality can be extended globally by observing that the discrepancy in defining
Sp~I,~qq corresponds exactly to the discrepancy in precisely defining ~ϕ.
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3.1.4 Integrability and MD Force Fields
We should next consider whether integrability applies to a significant number of force
fields. As described previously, the 1-dimensional harmonic oscillator, and in fact any
system built by adding independent higher-dimensional harmonic oscillators, is com-
pletely integrable [26]. Unfortunately, just as with ergodicity, it is extremely difficult to
prove that any force field generates a completely integrable Hamiltonian. Further, just as
with ergodicity, the set of integrable Hamiltonians is also meager in the set of all Hamil-
tonians [36].

So why do we consider integrable systems as a useful approximation to the behav-
ior of MD simulations, in contrast with ergodicity? The key mathematical result is the
following:

Theorem 3.1.10 (Kolmogorov-Arnold-Moser (KAM) Theorem). Given an unperturbed non-
degenerate (i.e. det

ˇ

ˇ

ˇ

Bω
BI

ˇ

ˇ

ˇ
‰ 0) completely integrable analytic Hamiltonian H0, adding small con-

servative Hamiltonian perturbations H1 only slightly deforms non-resonant invariant tori M~g. In
the phase space of the perturbed system, we also have invariant tori on which the trajectories are
conditionally-periodic. These invariant tori form a majority of phase space of the perturbed system,
i.e. the measure of the complement of their union is small when their perturbation is small.

The proof of the KAM theorem can be found in Arnold [2]. The KAM theorem tells us
that the fundamental structural fact about completely integrable systems, the existence of
invariant tori and conditionally periodic trajectories, is largely preserved upon small per-
turbations. Thus, while small perturbations of completely integrable systems may result
in non-integrable systems, we still have our invariant tori and can still draw conclusions
about the behavior of our system in the majority of phase space. This is contrast to ergod-
icity, where we have no reason to believe the structure of ergodic systems is maintained
even under small perturbations from ergodic Hamiltonians.

There are a couple of other reasons to believe that MD force fields are completely in-
tegrable or close to completely integrable. Intuitively speaking, we can think of the result
of Liouville’s theorem as claiming that there are a number of distinct frequencies under
which our system moves, and this does correspond closely to how biomolecular simu-
lations behave; it’s easy to draw a distinction between the frequencies associated with
bond stretches, bonds bending, torsion, and non-bonded forces. Thus, there is reason to
believe that working with completely integrable systems will give us a good understand-
ing of convergence properties of molecular dynamics simulations [9].

Finally, Cances et al. [9] have previously found that the convergence properties we
prove in subsequent sections hold up empirically for real MD simulations. This is weak
empirical justification for the fact that force fields are in fact completely integrable or close
to completely integrable. We will present these empirical results in Section 3.2.4.

Despite these arguments, it would obviously be better to prove the convergence of
time and spatial averages and bound sampling error independent of any assumptions on
the force field. Unfortunately, this remains an open problem, so we focus here on what
has already been proven [31, 7, 33].
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3.2 Sampling Error
Suppose we’re given an observable Ap~p,~qq. Define the spatial average

xAy “
ş

M Ap~p,~qq dµp~p,~qq
ş

M dµp~p,~qq
(3.1)

where M is the manifold corresponding to accessible phase space (conserving energy and
whatever other first integrals we have) and dµ is the canonical measure inherited from all
of phase space R2n. Define the time average

xAy pTq “
1
T

ż T

0
Ap~pptq,~qptqq dt (3.2)

given a trajectory ~pptq,~qptq.
In this section, we will show that lim

TÑ8
xAy pTq “ xAy . We will also investigate sam-

pling error, the error associated with bounding the left hand side at some finite T. As ex-
plained previously, we will work on invariant tori, associated with completely integrable
Hamiltonians and most of the phase space of Hamiltonians slightly perturbed from com-
pletely integrable ones.

3.2.1 Equivalence of Spatial and Time Averages
We will need one additional condition on our system to ensure that spatial and time av-
erages are equal. Call the elements of ~ω our frequencies, and let them be independent
if they are linearly independent over the field of rational numbers, i.e. if ~k P Qn and
~k ¨ ~ω “ 0, then~k “ 0. This is a reasonable condition to place for realistic systems, since it’s
highly unlikely that two distinct frequencies of a natural system would be related by a
rational number (slight perturbations would make this untrue). One can extend these re-
sults to show that given r linear dependences, our invariant torus reduces to an invariant
torus of dimension n´ r with n´ r independent frequencies and conditionally periodic
motion, at which point our results still apply as usual [2]. Systems of identical particles
can thus be treated by reducing the number of independent frequencies.

Theorem 3.2.1. If our Hamiltonian is completely integrable and our frequencies are independent,
then

lim
TÑ8

xAy pTq “ xAy

for any continuous observable A.

Our primary strategy for proving this result and subsequent similar results will be the
Fourier expansion. We will briefly review the Fourier expansion for a real continuous
function f over a multidimensional torus Tn. We have

f “
ÿ

~kPZn

f̂ p~kqei~k¨~ϕ
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where
f̂ p~kq “

1
p2πqn

ż

Tn
f p~ϕqe´i~k¨~ϕ d~ϕ.

Convergence can be proven by noting that the exponentials form an orthonormal basis
for a Hilbert space or by applying the Stone-Weierstrass theorem [2].

Proof of Theorem 3.2.1 modified from Arnold [2]. Work on our invariant torus with coordi-
nates ~ϕ. Then the spatial average from Equation 3.1 reduces to the integral

xAy “
1

p2πqn

ż 2π

0
. . .

ż 2π

0
f p~ϕq dϕ1 . . . dϕn.

The time average from Equation 3.2 is now

xAy pTq “
1
T

ż T

0
Ap~ϕptqq dt “

1
T

ż T

0
Ap~ϕ0 ` ~ωtq dt.

We’ll first prove the result for exponentials A “ ei~k¨~ϕ. In this case, if~k “ 0, then A “ 1
so xAy pTq “ xAy “ 1 always. If not, then our spatial average is an integral over an entire
period of a complex exponential, so xAy “ 0. Our time average is

lim
TÑ8

1
T

ż T

0
eip~k¨p~ϕ0`~ωtqq dt “ lim

TÑ8

ei~k¨~ϕ0

i~k ¨ ~ω
eiTp~k¨~ωq ´ 1

T
“ 0

as desired.
Our proof above immediately implies the result for trigonometric polynomials, since

both the time and spatial averages are linear.
Now consider an arbitrary observable A and take its Fourier expansion. For fixed

ε ą 0, by convergence of the Fourier series, we may pick a partial sum (a trigonometric
polynomial) P such that |A´ P| ă ε

3 . Therefore

| xAy ´ xPy | “
ˇ

ˇ

ˇ

ˇ

1
p2πqn

ż

Tn
pA´ Pq d~ϕ

ˇ

ˇ

ˇ

ˇ

ď
1

p2πqn

ż

Tn
|A´ P| d~ϕ ď

ε

3

and similarly | xAy pTq ´ xPy pTq| ď ε
3 . Pick T large enough so by the above argument

| xPy ´ xPy pTq| ă ε
3 . Combining these, we get | xAy ´ xAy pTq| ă ε. By the definition of

limit, we now have lim
TÑ8

xAy pTq “ xAy as desired.

3.2.2 Bounding Sampling Error
We’d now like to modify the above proof to determine the rate at which sampling error
converges to 0. To do so, we will require one additional condition on the potential values
of~k ¨ ~ω.

We assume Siegel’s diophantine condition, i.e. that there exist γ,ν ą 0 such that for
all~k P Zn nonzero we have

|~k ¨ ~ω| ą γ|~k|´ν . (3.3)
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This condition intuitively just means that our frequencies are not particularly close to
being linearly independent [9]. It can be shown that the set of frequencies not satisfying
this condition for ν ą n´ 1 has Lebesgue measure Opγqwhich tends to 0 as γ Ñ 0. Thus
almost all frequencies satisfy this condition for some γ [26]. We will also assume our
observable is real analytic (reasonable for any physically realistic observable).

Theorem 3.2.2. Under the same conditions as before and Siegel’s diophantine condition, there
exists a constant c such that

| xAy pTq ´ xAy | ď
c
T

for any analytic observable A.

Proof modified from Cances et al. [9]. Take the Fourier expansion of A as

Ap~ϕq “
ÿ

~kPZn

Âp~kqei~k¨~ϕ.

Note that by an extension of the Paley-Wiener theorem, analyticity of A implies that the
Fourier coefficients exponentially decay, i.e. we have Âp~kq ď Ce´D|~k| for some positive
constants C, D independent of T.

To compute the spatial and time averages, we will want to switch integrals and infinite
sums of the Fourier expansion freely in the subsequent steps. We may justify this by using
the dominated convergence theorem; note that

|Âp~kqei~k¨~ϕ
| ď Âp~kq ď Ce´D|~k|

by the above, so our sum is dominated by a convergent sum and we may apply the dom-
inated convergence theorem to freely bring integrals inside the Fourier expansion.

As a result, we have
xAy “

ÿ

~kPZn

A

Âp~kqei~k¨~ϕ
E

“ Âp~0q

by the same reasoning as in the proof of Theorem 3.2.1. Further,

xAy pTq “
ÿ

~kPZn

A

Âp~kqei~k¨~ϕ
E

“ Âp~0q `
1
T

ÿ

~kPZn ,~k‰~0

Âp~kq
ei~k¨~ϕ0

´

eiTp~k¨~ωq ´ 1
¯

i~k ¨ ~ω
.

Using Siegel’s diophantine condition (Equation 3.3), we may now bound the error by

| xAy pTq ´ xAy | ď
1
T

ÿ

~kPZn ,~k‰~0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Âp~kq
ei~k¨~ϕ0

´

eiTp~k¨~ωq ´ 1
¯

i~k ¨ ~ω

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1
T

ÿ

~kPZn ,~k‰~0

2C
γ
|~k|νe´D|~k|.

By the integral test, this sum is convergent, thus we may take c “
ř

~kPZn ,~k‰~0
2C
γ |
~k|νe´D|~k|

and we have the desired.
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3.2.3 Reducing Sampling Error with Filter Functions
It’s reasonable to ask whether it is possible to improve this bound by slightly modifying
the computation of time averages. We obviously do not want to increase computational
time any further, so the only real possible modification is by adding a positive filter func-
tion ξptq : r0, 1s Ñ Rě0 and computing the average

xAyξ pTq “
şT

0 Apϕptqqξ
` t

T
˘

dt
şT

0 ξ
` t

T
˘

dt
(3.4)

instead. Our previous case was effectively ξptq “ 1. The intuitive idea behind the filter
is to place unequal weights on the value of our function at certain points in the trajectory
and compute a weighted average in an attempt to improve convergence. We will later
show an example of a particularly nice filter function.

Theorem 3.2.3. Under the same conditions as before, and given that ξ is pd` 1qst times differ-
entiable with ξp jqp0q “ ξp jqp1q “ 0 for j “ 0, . . . , d´ 1, then there exist constants c0 and R not
dependent on d such that

| xAyξ pTq ´ xAy | ď
1

Td`1

˜

c0Rd`1
pνpd` 1qq!

|ξpdqp0q| ` |ξpdqp1q| ` ||ξpd`1q||L1

||ξ||L1

¸

.

As usual, the L1 norm is defined by ||ξ||L1 “
ş1

0 ξptq dt. We pick ν integer in Siegel’s
diophantine condition so the factorial makes sense.

Proof from Cances et al. [9]. We have xAy “ Âp~0q and expanding Equation 3.4,

xAyξ pTq “ Âp~0q `
1

T||ξ||L1

ÿ

~kPZn ,~k‰~0

Âp~kqei~k¨~ϕ0

ż T

0
eitp~k¨~ωqξ

ˆ

t
T

˙

dt

by similar reasoning as in the proof of Theorem 3.2.2. We now want to estimate this
integral.

Integrate by parts d times. We obtain

ż T

0
eitp~k¨~ωqξ

ˆ

t
T

˙

dt “
p´1qd

pTip~k ¨ ~ωqqd

ż T

0
ξpdq

ˆ

t
T

˙

eitp~k¨~ωq dt

since the boundary terms all vanish by our given conditions. Integrating by parts one
more time, we get

ż T

0
eitp~k¨~ωqξ

ˆ

t
T

˙

dt “
p´1qd

pTip~k ¨ ~ωqqk`1
T
ˆ

ξpdq
ˆ

t
T

˙

eitp~k¨~ωq
ˇ

ˇ

ˇ

T

0

˙

´
p´1qd

pTip~k ¨ ~ωqqd`1

ż T

0
ξpd`1q

ˆ

t
T

˙

eitp~k¨~ωq dt

ď
1

|~k ¨ ~ω|d`1Td

´

|ξpdqp0q| ` |ξpdqp1q| ` ||ξpd`1q
||L1

¯
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We now can plug this back into our original expression. This yields

| xAyξ pTq ´ xAy | ď
1

Td`1
|ξpdqp0q| ` |ξpdqp1q| ` ||ξpd`1q||L1

||ξ||L1

ÿ

~kPZn ,~k‰~0

|Âp~kq|
|~k ¨ ~ω|k`1

and it remains to bound this last sum. Applying Siegel’s diophantine condition (Equation
3.3) and the Fourier expansion bound for analyticity, we have

ÿ

~kPZn ,~k‰~0

|Âp~kq|
|~k ¨ ~ω|d`1

ď
ÿ

~kPZn ,~k~0

C
γd`1 |

~k|νpd`1qe´D|~k|
ď

ÿ

~kPZn ,~k‰~0

C

γd`1
`D

2

˘νpd`1q pνpd` 1qq!e´
D
2 |
~k|

using the fact that xn ď n!ex which is true by Taylor series for positive x. This sum
converges for the same reasons as before, so we may now pick c0 “ C

ř

~kPZn ,~k‰~0 e´
D
2 |
~k|, R “

1
γpD

2 q
ν to get the desired.

A particularly useful filter function is

ξpxq “ e´
1

xp1´xq

which satisfies the condition above for all d P N. As shown in [9], there exist constants
µ,β, δ ą 0 such that

||ξpdq|| ď µβddδd, ||ξpdq||L8 ď µβddδd

where the L8 norm is the supremum over r0, 1s. Letting c0 “ cµ, r1 “ Rβ, we now have

| xAyξ pTq ´ xAy | ď c1

´r1

T

¯d`1
pd` 1qδpd`1q

pνpd` 1qq! ď c1

ˆ

r1ν
ν

T

˙d`1

pd` 1qpδ`νqpd`1q

for all d. The RHS is a function of d which can be minimized; computing this, we get

| xAyξ pTq ´ xAy | ď c1 exp

˜

´
δ`ν

e

ˆ

T
r1νν

˙
1

δ`ν

¸

.

Thus we get an exponentially decaying bound on the size of our error, which is a signifi-
cant improvement over the naive results without a filter function [9].

The primary disadvantage of use of a filter function is that such methods have not
been implemented in most standard MD packages, since most computational chemists
think improvements on convergence of simulations are relatively unimportant. However,
use of the filter function described above has led to significant improvements when tested
[8]; we will now examine some numerical results that demonstrate our findings above.
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3.2.4 Numerical Simulations
We now provide some empirical evidence to support the above results, in particular the
claim that MD simulations are close to completely integrable. If they are in fact roughly
completely integrable, we expect convergence rates of observables to be similar to those
predicted by Theorem 3.2.3; it is still possible we will see good convergence for systems
that are not completely integrable. We ignore time discretization error, since as shown in
the next chapter it is relatively small for small time steps, and force-field error by assum-
ing our force fields are completely accurate. We will look at cases where the system is
essentially analytically solvable by other means.

The simulations presented in this section were carried out by Cances et al. [8]. They
use k where we have used d above, so the figures are labeled accordingly.

We begin with a system of 5 harmonic oscillators

H “

5
ÿ

i“1

p2
i

2
`ω2

i
q2

i
2

.

This system normally satisfies all the conditions in Theorem 3.2.3, but we make it violate
Siegel’s diophantine condition by picking frequencies ωi that are rational numbers. The
observable A “ p2

4 in this simulation. In Figure 3.2.1a, we see the predicted convergence
bound; a least-squares fit verifies a decay of OpT´0.978qwithout any filter function and of
OpT´3.87qwith a filter function with d “ 3, supporting our results [8].

The next potential is a Lennard-Jones potential that models van der Waals dispersion;
this term would be very common in any MD simulation. We have M “ 288 particles with

H “

M
ÿ

i“1

~p2
i

2
`

M
ÿ

i“1

ÿ

jąi

˜

4
|~q j ´~qi|

12 ´
4

|~q j ´~qi|
6

¸

.

The initial conditions approximate a solid-phase system and the desired observable is
the pressure P (which can be written as a function of position and momentum). This
system is not completely integrable since there are not enough first integrals, but we see
in Figure 3.2.1b that it still satisfies the results of Theorem 3.2.3. Specifically, without any
filter function we have a decay of OpT´0.996q and with a filter function with d “ 3 we
have a decay of OpT´3.76q. The fact that an MD simulation satisfies our theorem without
the completely integrable hypothesis is very promising for the applicability of our results
in general [8].

The last potential under simulation was an alkane, or a chain of bonded atoms with
potentials as outlined in Section 1.1.2.1. The observable is the end-to-end distance with
a chain of M “ 40 particles. This system is once again not completely integrable, but at
low temperatures (T “ 2.13 K) we find that our system exhibits the desired convergence
properties in Figure 3.2.1c. In particular, without a filter function we have a decay of
OpT´0.98q and with a filter function with d “ 3 we have a decay of OpT´4.21q [8].

At high temperatures (T “ 135 K) this no longer holds; our decay, with or without a
filter function, is approximated asOpT´ 1

2 q. This result seems to hold in general for a large
number of not completely integrable systems. One potential explanation for the failure
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(a) Harmonic Oscillator (b) Lennard-Jones

(c) Alkane, Low Temperature (d) Alkane, High Temperature

Figure 3.2.1: Bounds on Sampling Error in MD Simulation. Figures taken from Cances
et al. [8]; k refers to d, the expected bound on sampling error size. We see that Theorem
3.2.3 holds in some generality, as in (a) Siegel’s diophantine condition fails and in (b)
and (c) the system is not completely integrable, but we still have the desired convergence
properties. However, in (d) we find that the Theorem no longer holds.

of our theorem is that our system now has many accessible energy wells, corresponding
to different conformers of the alkane, and these are all accessible to the high temperature,
which means the system has high kinetic/potential energy. Exploring these wells takes
time, since the transition between wells takes time and is not energetically favorable.
One potential way around this problem is by sampling a large number of conformations
in different wells. While this is practical for the alkane, it is not for larger molecules
that would also pose similar problems (since the number of wells grows exponentially).
Proving this result mathematically and working around it for larger molecules remains
an open question [8].



Chapter 4

Perturbation Theory and Time Discretiza-
tion Error

Our next goal is to understand time discretization error, the error associated with using
the Störmer-Verlet method instead of following the exact trajectory. Our primary tools
for this analysis will be backwards error analysis and the Arnold-Liouville theorem on
completely integrable systems, both of which we have already introduced. Backwards
error analysis tells us that the trajectory from the Störmer-Verlet method is associated
with a modified Hamiltonian that is a small perturbation from the original Hamiltonian
of our system. Thus our goal for this chapter will be to understand perturbation theory
on completely integrable systems and apply those results to the modified Hamiltonian of
the Störmer-Verlet method.

4.1 Perturbation Theory for Integrable Systems
In this section, we will develop perturbation theory for integrable systems and under-
stand how the invariant tori from the Arnold-Liouville theorem are almost preserved
under small perturbations of the Hamiltonian.

Suppose we have a completely integrable Hamiltonian associated with our original
force field H0p~Iq in action-angle coordinates p~I,~ϕq. We add a perturbation H1p~I,~ϕq such
that our new Hamiltonian is

Hp~I,~ϕq “ H0p~Iq `εH1p~I,~ϕq (4.1)

for some small ε. Assume that the perturbation H1 is bounded (but may depend on ε)
and that all Hamiltonians are analytic.

We would like to change coordinates symplectically to a different coordinate system
that looks more like action-angle coordinates for our new perturbative coordinate system.
Specifically, we want to change coordinate p~I,~ϕq ÞÑ p~J,~θq such that the symplectic struc-
ture of our manifold is preserved, and the Hamiltonian depends on only ~J up to order
OpεNq for some ε.

4.1.1 Linstedt-Poincaré Series
In order to do this, just as in the proof of Theorem 3.1.9, we use a generating function

Sp~J,~ϕq “ ~J ¨~ϕ`εS1p~J,~ϕq `ε2S2p~J,~ϕq ` . . .`εN´1SN´1p~J,~ϕq. (4.2)

and then require Ii “
BS
Bϕi

,θi “
BS
B Ji

to enforce symplecticity. This expansion is known as a
Linstedt-Poincaré series.

30
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Example 4.1.1. Let’s explicitly compute N “ 2 [26]. Our generating function will look
like

Sp~J,~ϕq “ ~J ¨~ϕ`εS1p~J,~ϕq

for some S1. Let the new Hamiltonian be

Kp~J,~θq “ Hp~I,~ϕq “ H0p~Jq `εK1p~J,~θq ` . . .

and we require that K1 depend only on ~J. Using Equation 4.1, we have

Hp~I,~ϕq “ H
ˆ

~J `ε
BS1

B~ϕ
p~J,~ϕq,~ϕ

˙

“ H0p~Jq `ε
ˆ

BH0

B~I
p~Jq ¨

BS1

B~ϕ
p~J,~ϕq ` H1p~J,~ϕq

˙

` . . . .

(4.3)
Now defineω0p~Jq “

BH0
B~I
p~Jq for convenience. We know that the quantity in parentheses

in Equation 4.3 must be independent of ~ϕ so it must be equivalent to its average over ~ϕ.
This gives us the equation

ω0p~Jq ¨
BS1

B~ϕ
p~J,~ϕq ` H1p~J,~ϕq “

1
p2πqn

ż

Tn
H1p~J,~ϕq d~ϕ. (4.4)

Apply a Fourier decomposition at each fixed ~J (so on a torus)

S1p~J,~ϕq “
ÿ

~kPZn

Ŝ1p~J,~kqei~k¨~ϕ, H1p~J,~ϕq “
ÿ

~kPZn

Ĥ1p~J,~kqei~k¨~ϕ.

The only surviving term on the RHS of Equation 4.4 is the ~0th term. Thus, we get for
~k ‰ 0 that

Ŝ1p~J,~kq “ ´
Ĥ1p~J,~kq

iω0p~Jq ¨~k
.

Assume Siegel’s diophantine condition (Equation 3.3) as before. Then if H1 is analytic,
the remainder term is bounded and this Fourier expansion converges. We can approxi-
mate the perturbation H1 up toOpε2q by a trigonometric polynomial of degree m „ | logε|
if we choose and then work entirely with trigonometric polynomials.

The general case is computed similarly [26, 41]. Taylor expanding around~I for conve-
nience, we get equations of the form

ω0p~Jq ¨
BS j

B~ϕ
p~J,~ϕq ` K jp~J,~ϕq “

1
p2πqn

ż

Tn
K jp~J,~ϕq d~ϕ (4.5)

for j “ 1, . . . , N ´ 1. Here, K1 “ H1 as above,

K2 “
1
2
B2H0

B~I2

ˆ

BS1

B~ϕ
,
BS1

B~ϕ

˙

`
BH1

B~I
¨
BS1

B~ϕ

and in general K j is a sum of terms of the form

1
i!
BiHk0

B~Ii

ˆ

BSk1

B~ϕ
, . . . ,

BSki

B~ϕ

˙

(4.6)
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where k0 ` . . . ` ki “ j and k0 “ 0, 1. This can be seen by an explicit Taylor expansion;
multiple derivatives are interpreted as multilinear maps that take the given values as
arguments.

These equations can be solved using Fourier expansions explicitly. Each Fourier ex-
pansion will converge as before assuming analyticity of H1 and Siegel’s diophantine con-
dition. However, the entire series looks like

Kp~J,~θq “ H0p~Jq `εK1p~Jq `ε2K2p~Jq ` . . .`εN´1KN´1p~Jq `εNRNp~J,~ϕq (4.7)

with some remainder term RN. Convergence of this series as N Ñ 8 is not obvious;
rather than dealing with these convergence issues, we will in general truncate H1 to some
trigonometric polynomial and thus deal with trigonometric polynomials K j, S j [26].

4.1.2 Bounding the Generating Function
We’d first like to see how close the trajectory remains to conditionally periodic motion
under a small perturbation. To do this, we’ll need to begin with a few technical lemmas.
The bounds that follow are obviously not very sharp, but they are sufficient for proving
our final result.

Fix ρ ą 0. Complexify the torus Tn to Uρ by defining

Uρ :“ t~ϕ P Tn
` iRn

| || Im~ϕ|| ă ρu.

Here || ¨ || refers to the max norm. We define a functional norm for a bounded analytic
function f on Uρ by

|| f ||ρ “ sup
~ϕPUρ

|Fpϕq|,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

B f
B~ϕ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ρ

“

n
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

B f
Bϕ j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ρ

.

Lemma 4.1.2. Suppose ~ω P Rn satisfies Siegel’s diophantine condition (Equation 3.3). Let g be
a bounded real-analytic function on Uρ and let g “ 1

p2πqn
ş

Tn g d~ϕ be the spatial average over Tn.
Then the equation

ω ¨
B f
B~ϕ
` g “ g

has a unique real-analytic bounded solution f on Uρ with zero average f “ 0.
Fix positive δ ă minpρ, 1q. Then f is bounded on Uρ´δ by

|| f ||ρ´δ ď κ0δ
´α`1

||g||ρ,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

B f
B~ϕ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ρ´δ

ď κ1δ
´α
||g||ρ

whereα “ ν ` n` 1,κ0 “ γ
´18n2νν!,κ1 “ γ

´18n2ν`1pν ` 1q!.

The proof of this lemma is by Fourier expansion of the differential equation; it may be
found in Hairer et al. [26]. We’ll use this lemma to get bounds on the generating function
S j and the remainder terms.
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Lemma 4.1.3. Let H0, H1 be real-analytic and bounded by M on Bp~J˚, rq, the ball of radius r
around ~J˚ P Rn, and on Bp~J˚, rq ˆUρ, respectively. Suppose ωp~J˚q “ BH0

B~I
p~J˚q satisfies Siegel’s

diophantine condition (Equation 3.3). Then the coefficients of the
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

BS j

B~ϕ
p~J˚, ¨q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ρ
2

ď C0pC1 jαq j´1

for all j ě 0. C0 “ 2r, C1 “ 128
´

κ1 M
rρα

¯2
withα,κ1 as defined in Lemma 4.1.2.

Proof modified from Hairer et al. [26]. By Equation 4.5, S j solves the differential equation
from Lemma 4.1.2 for g “ K j, where K j is defined in Equation 4.6. Fix some N and
let δ1 “

ρ
4 , δi “

ρ
4N for all i ą 1. Abbreviate ||Kk||i “ ||Kkp~J˚, ¨q||

ρ´
ři

j“1 δ j
for all i. Lemma

4.1.2 now implies that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

BS j

B~ϕ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j
ď κ1δ

´α
j ||K j|| j´1.

We need to bound the right hand side.
Cauchy’s estimate tells us that

ˇ

ˇ

ˇ

ˇ

1
i!
BiH0

B~Ii
pv1, . . . , viq

ˇ

ˇ

ˇ

ˇ

ď
M
ri |v1| . . . |vi|

so we have

||K j|| j´1 ď

j
ÿ

i“2

ÿ

k1`...`ki“ j

M
ri

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

BSk1

B~ϕ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k1

. . .
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

BSki

B~ϕ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ki

`

j´1
ÿ

i“1

ÿ

k1`...`ki“ j´1

M
ri

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

BSk1

B~ϕ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k1

. . .
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

BSki

B~ϕ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ki

.

Now we can combine the two bounds to get a recursive bound. Define µ j “
Mκ1
rδαj

and

we have
1
r

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

BS j

B~ϕ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j
ď β j

where β1 “ µ1 and

β j “ µ j

j
ÿ

i“2

ÿ

k1`...`ki“ j

βk1 . . .βki `µ j

j´1
ÿ

i“1

ÿ

k1`...`ki“ j´1

βk1 . . .βki .

To tackle this, define the generating function bpζq “
ř8

j“1β jζ
j and we then have

bpζq ´µ1ζ “ µN

ˆ

1
1´ bpζq

´ 1´ bpζq
˙

`µNζ

ˆ

1
1´ bpζq

´ 1
˙

.

This is a quadratic equation; it can be solved to yield

bpζq “
1
2

1` pµ1 ´µNqζ

1`µN
´

d

1
4

ˆ

1` pµ1 ´µNqζ

1`µN

˙2

´
µ1

1`µN
ζ ď

1` pµ1 ´µNqζmax

2p1`µNq
.
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Picking ζmax “
1

C1 Nα , we can verify that bpζq is analytic in the region |ζ| ď ζmax (the
quantity under the square root is positive). By Cauchy’s estimate, we now have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

BS j

B~ϕ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

N
ď rβN ď 2rpC1Nα

q
N´1

ď C0pC1Nα
q

N´1

as desired.

The last thing we need is a bound on the remainder terms.

Lemma 4.1.4. Under the same conditions as in Lemma 4.1.3, with r ď 1, C1Nα ď 1
2ε , we have

||RNp~J˚, ¨q||ρ
2
ď 4Mr

ˆ

4C1

r
Nα

˙N
.

Proof from Hairer et al. [26]. By Equations 4.7 and 4.6, the remainder terms look something
like

1
i!
BiHk0

B~Ii
pQk1 , . . . , Qkiq

with
Qk “

BSk
B~ϕ

`ε
BSk`1

B~ϕ
` . . .`εN´k´1 BSN´1

B~ϕ
.

This is just everything that’s left over in our Taylor expansion after we take terms of order
N ´ 1 or lower.

By Lemma 4.1.3, we have

||Qkp~J˚, ¨q||ρ
2
ď

N´1
ÿ

j“k

ε j´kC0pC1 jαq j
ď C0

N´1
ÿ

j“1

2´p j´kq
ˆ

j
N

˙α j
pC1Nα

q
k
ď 2C0pC1Nα

q
k

using our condition and the formula for a geometric series. Cauchy’s estimate now yields
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
i!
BiHk0

B~Ii
pQk1 , . . . , Qkiq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ρ
2

ď
M
ri 2C0pC1Nα

q
N
ď 4Mr

ˆ

C1

r
Nα

˙N
.

A stars-and-bars-style counting argument implies that there are 2
`N`i´1

i
˘

terms of this
form for a given i. We may thus bound the total number of terms independent of i by

2
N´1
ÿ

i“0

ˆ

N ` i´ 1
i

˙

ď

2N´1
ÿ

i“0

ˆ

2N ´ 1
i

˙

“ 4N .

This gives us the desired estimate.
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4.1.3 Invariant Tori under Perturbations
With these bounds computed, we can understand how closely invariant tori are main-
tained under perturbations. Define

~ωε,Np~Jq “
B

B~J
Kp~J,~θq (4.8)

where K is the truncated Hamiltonian to N terms in the new coordinates p~J,~θq. This is thus
the expected angular velocity of the angular coordinates ~θ if our perturbed Hamiltonian
was actually completely integrable.

Theorem 4.1.5. Let H0 be real-analytic on Bp~J˚, rq for ~J˚ P Rn and let H1 be real-analytic on
Bp~J˚, rqˆUρ with r ď 1,ρ ď 1. Suppose thatωp~J˚q “ BH0

B~I
p~J˚q satisfies Siegel’s diophantine con-

dition (Equation 3.3). Then there exist constants ε0, c0, C ą 0 such that for every 0 ă β ď 1 and
ε ď ε0, we have a real-analytic symplectic transformation p~I,~ϕq ÞÑ p~J,~θq such that trajectories
p~Jptq,~ϕptqq starting at ||~Jp0q ´~J˚|| ď c0ε

2β satisfy

||~Jptq ´~Jp0q|| ď Ct exp
´

´cε´
β
α

¯

and
||~θptq ´ ~ωε,Np~Jp0qqt´~θp0q|| ď Ctε´2β exp

´

´cε´
β
α

¯

for t ď exp
´

1
2 cε´

β
α

¯

. Here,α “ ν` n` 1, c “
´

16C1e
r

¯´ 1
α with C1 from Lemma 4.1.3. Further,

for p~I,~ϕq ÞÑ p~J,~θq, we have
||~I ´~J|| ď Cε

for ||~J ´~J˚|| ď c0ε
2β,~θ P Uρ

2
.

Intuitively, this theorem tells us that invariant tori under perturbation become near-
invariant tori, i.e. they are close to invariant (within exponentially decaying error) for
exponentially long times. We also see that the transformations are close to the identity.

Proof from Hairer et al. [26]. If H1p~J,~ϕq is a trigonometric polynomial in ~ϕ of degree m,
then by construction K j and S j are trigonometric polynomials of degree jm. We have

|k ¨ωp~Jq| ě |k ¨ωp~J˚q| ´ |k|pmax ||ω1||q||~J ´~J˚||

by the Mean Value Theorem, so there exists δ ą 0 such that

|k ¨ωp~Jq| ě
1
2
γ|k|´ν

for ||~J ´ ~J˚|| ď δ, |k| ď jm. This δ must be proportional to γp jmq´ν´1; we may let δ
be proportional to γp jmq´α as that is weaker. Our estimate for the remainder term and
generating function from Lemmas 4.1.3 and 4.1.4 then hold on this region.
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For general H1, we may approximate it by a trigonometric polynomial of degree m
with error O

´

e´mρ
2

¯

on Bp~J˚, rq ˆUρ
2
. Pick m “ 2N

ρ ; then this error is just O
`

e´N˘. Then
our bounds for the remainder term and generating function still hold.

Thus, for some constant c˚ and C2 “
16C1

r , we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

BS j

B~ϕ
p~J,~ϕq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C0p4C1 jαq j´1

for ||~J ´~J˚|| ď c˚p jmq´α ,~ϕ P Uρ
2

and

|RNp~J,~ϕq| ď 4MrpC2Nα
q

N

for ||~J ´~J˚|| ď c˚pNmq´α ,~ϕ P Uρ
2
. Pick c0 so these thresholds are satisfied.

The Hamiltonian equations for our system must be

9~J “ ´
BK
B~θ
p~J,~θq “ ´εN BRN

B~ϕ

B~ϕ

B~θ
“ O

´

εN
pC2Nα

q
N
¯

and
9~θ “

BK
B~J
p~J,~θq “ ~ωε,Np~Jq `O

´

pNmqαεN
pC2Nα

q
N
¯

.

Pick N such that C2Nα “ 1
eεβ so we then get

9~J “ O
´

exp
´

´cε´
β
α

¯¯

, 9~θ “ ~ωε,Np~Jq `O
´

ε´2β exp
´

´cε´
β
α

¯¯

.

for ||~J ´~J˚|| ď c0ε
2β and c “ pC2eq´

1
α , which is the first desired statement.

For the second part, recall that~I “ BS
B~ϕ “

~J `ε j řN
j“1

BS j
B~ϕ so on the given range we have

||~I ´~J|| ď
N
ÿ

j“1

ε jC0p4C1 jαq j´1

which is clearly an Opεq bound for sufficiently small ε; we can adjust the threshold ε0 as
needed to ensure that this is true.

4.2 Applying Perturbation Theory to Störmer-Verlet
Now that we have the necessary building blocks, our final step is to apply perturbation
theory to the Störmer-Verlet method and bound the resulting errors; we will use this to
bound errors in energy conservation and time discretization error. Our general strategy
for applying the perturbation theory of completely integrable systems to analyzing the
Störmer-Verlet method is relatively simple. We know by Theorem 2.2.1 and by Theo-
rem 2.2.2 that a modified Hamiltonian exists that describes dynamics according to the
Störmer-Verlet process. Further, since the Störmer-Verlet method is second-order, the
leading-order correction term has order h2. Thus we may pick ε “ h2 and define our
perturbation using this modified Hamiltonian.

We’ll begin by applying these methods to refine the estimate we made for energy
conservation under Störmer-Verlet in Theorem 2.2.3.
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4.2.1 Energy Conservation
Complete integrability allows us to improve bounds on conservation of energy by remov-
ing the linear error growth in time we found in Theorem 2.2.3.

Theorem 4.2.1. Apply Störmer-Verlet to a completely integrable Hamiltonian system. Suppose
that ωp~I˚q satisfies Siegel’s diophantine condition. Then there exist constants C, c, h0 such that
for all step sizes h ď h0, every numerical solution starting at ~I0 with ||~I0 ´~I˚|| ď c| log h|´ν´1

satisfies
||~In ´~I0|| ď Ch2

for t “ nh ď h´2.

Proof modified from Hairer et al. [26]. By Theorem 2.2.2, we know there exists a modified
Hamiltonian

rHp~p,~qq “ Hp~p,~qq ` h2H3p~p,~qq ` h3H4p~p,~qq ` h4H5p~p,~qq

where we truncate at the h4 term. This modified Hamiltonian describes dynamics un-
der Störmer-Verlet up to Oph5q. Picking ε “ h2, we now have a perturbed Hamiltonian
in action-angle coordinates. Let ~Jn (or ~In in the original coordinates) be the numerical
trajectory and ~Jptq be the trajectory along the truncated differential equation.

We now apply Theorem 4.1.5, picking h0 from the given value of ε0. This tells us that
over (significantly more than) the relevant time range we have

|~Jptq ´~J0|| ď Ct exp
´

´ch´
2β
α

¯

, ||~I0 ´~J0||, ||~In ´~Jn|| ď Ch2.

Note that the first bound is smaller than the second one over the given time range t ď h´2.
All we need is a bound on ||~In ´~J0||.

One step of the numerical method must look like ~Jn`1 “ ~Jn `O
`

h5˘ by the construc-
tion of the truncated form. Thus at t “ nh we have ~Jn “ ~Jptq `O

`

th4˘ and we have
t ď h´2, so that last term is O

`

h2˘. Adding together the bounds that we have provided
yields that ||~In ´~I0|| ď Ch2 as desired.

Since the first coordinate of the original ~I action-angle coordinates is the unperturbed
Hamiltonian, this is a bound on the energy of the system under simulation that does not
grow with time. Thus this is a significant improvement over the bounds provided in
Theorem 2.2.3.

This estimate can be significantly improved to be accurate over exponential times and
starting points of polynomial distance away, just as with Theorem 4.1.5 [26]. That requires
a fancier estimate for ||~Jn ´~Jptq|| relying on analyticity; the details can be found in Hairer
et al. [26]. We will not need this bound for our work in understanding time discretization
error.
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4.2.2 Bounding Time Discretization Error
We will now simultaneously bound time discretization and sampling error. We present
this result with the use of a filter function; the modification to the typical case without a
filter function is obvious.

Given a filter function ξ , define the time average

xAyRie
ξ pTq “

řn´1
j“0 ξ

´

j
n

¯

Ap~p j,~q jq

řn´1
j“0 ξ

´

j
n

¯ (4.9)

where t~p j,~q ju represent the trajectory computed via Störmer-Verlet and n is the number
of time steps taken. Let h be the step size as usual. This is the discretized version of
the filter-function time average we computed earlier. We want to bound the difference
between this and xAy.

Theorem 4.2.2. Consider a completely integrable Hamiltonian system with real-analytic Hamil-
tonian H simulated under Störmer-Verlet. Suppose our filter function is pd` 1q times differen-
tiable with ξp jqp0q “ ξp jqp1q “ 0 for all 0 ď j ď d ´ 1 and our observable A is real-analytic.
In action-angle coordinates, suppose ~ωp~I˚q satisfies Siegel’s diophantine condition (Equation 3.3).
Then there exist positive constants h0, c0, c1, C such that for all trajectories starting at ||~I0´~I˚|| ď
c0h2µ where µ ď minp2,ν ` n ` 1q and the step size h ď h0, we have for times T “ nh ď
exp

´

c1h´
µ
α

¯

that

| xAyRie
ξ pTq ´ xAy | ď C

ˆ

1
Td`1 ` h2

˙

.

Note that the O
´

1
Td`1

¯

error bound corresponds to sampling error, so the only addi-

tional contribution from time discretization error is a O
`

h2˘ bound. Thus for exponen-
tially long times, time discretization error does not increase the error in our measured
observable.

Proof from Cances et al. [9]. The conditions provided are sufficient to apply Theorem 4.1.5
with ε “ h2, as above. Switch to the p~J,~θq coordinate system defined using that theorem.
We then have using Equation 4.9

xAyRie
ξ pTq “

řn´1
j“0 ξ

´

j
n

¯

Ap~J j,~θ jq

n
řn´1

j“0
1
nξ

´

j
n

¯ .

We now take a Fourier transform and apply the trajectories from Theorem 4.1.5. De-
fine ~ωh “ ~ωh2 ,5p

~Jp0qq (recalling the notation from Equation 4.8). Expanding our Fourier
transform, we get

xAyRie
ξ pTq “

1

n
řn´1

j“0
1
nξ

´

j
n

¯

ÿ

~kPZn

Âp~J0,~kqei~k ~̈θ0

¨

˝

n´1
ÿ

j“0

ξ

ˆ

j
n

˙

ei jhp~k¨~ωhq

˛

‚`O
´

exp
´

´ch´
µ
α

¯¯

.

(4.10)
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Theorem 4.1.5 tells us that our transformation is Oph2q away from the identity, so as
before we have

Âp~J0,~0q “ xAy `Oph2
q.

We now need to get the O
´

1
Tk`1

¯

bound corresponding to sampling error. We will pro-
ceed by rearranging the above equation’s nonzero terms into something we can more
easily apply Siegel’s diophantine condition to as before. First, we have the following
motivating lemma:

Lemma 4.2.3. For a filter function ξ satisfying the above conditions, given a complex number
z ‰ 1, |z| “ 1, we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
ÿ

j“0

ξ

ˆ

j
n

˙

z j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
2e2dd

nd|1´ z|d`1

´

|ξpdqp0q| ` |ξpdqp1q| ` ||ξpd`1q
||L8

¯

assuming d ă n.

The proof of Lemma 4.2.3 is by expansion and the Mean Value Theorem; it may be
found in Cances et al. [9]. We’d like to apply Lemma 4.2.3 with z “ ei jhp~k¨~ωhq, but we must
make sure that Siegel’s diophantine condition is satisfied for ~ωh, else the RHS of Lemma
4.2.3 will be unbounded and thus useless. We currently only have Siegel’s diophantine
condition for ~ωp~I˚q, but fortunately, Siegel’s diophantine condition holds in a modified
form for most~k at ~ωh; we now prove this fact.

Lemma 4.2.4. For all h ď h0 and all~k P Zn, we have

|~k ¨ ph~ωhq| ď
γ

2
|~k|´ν ùñ |~k| ě ch´

2
ν`1

for some positive constant c.

Proof from Cances et al. [9]. We have by Theorem 4.1.5 that h~ωh “ ~ω ` O
`

|h~ω|2
˘

so for
some constant C we have

γ

2
|~k|´ν ě |~ω ¨~k| ´ C|~k||h~ω|2 ě γ|~k|´ν ´ C|~k||h~ω|2

implying that

|~k| ě
ˆ

γ

2C|~ω|2
h´2

˙
1

ν`1

so we may pick c “ γ
2C|~ω|2 .

By Lemma 4.2.4, all ~k with |~k| ă ch´
2

ν`1 satisfy Siegel’s diophantine condition with
h~ωh and a modified constant γ2 . We can therefore split the summation in Equation 4.10
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and bound as follows:

| xAyRie
ξ pTq ´ Âp~J0,~0q| ď

1

n
řn´1

j“0
1
nξ

´

j
n

¯

ÿ

~kPZn ,0ă|~k|ăch´
2

ν`1

|Âp~J0,~kq|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
ÿ

j“0

ξ

ˆ

j
n

˙

ei jhp~k¨~ωhq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`
ÿ

~kPZn ,|~k|ěch´
2

ν`1

|Âp~J0,~kq|

ď
1

nd`1
řn´1

j“0
1
nξ

´

j
n

¯

ÿ

~kPZn ,0ă|~k|ăch´
2

ν`1

|Âp~J0,~kq|
ˇ

ˇ

ˇ
1´ eihp~k¨~ωhq

ˇ

ˇ

ˇ

d`1 c0

`
ÿ

~kPZn ,|~k|ěch´
2

ν`1

|Âp~J0,~kq|

by Lemma 4.2.3 for some c0 ą 0.
We now have 1

|1´ei~k¨h~ω|
ď

c1
h|~k¨~ω|

by Taylor expansion, so we may estimate the first term

above as
c0cd`1

1

Td`1
řn´1

j“0
1
nξ

´

j
n

¯

ÿ

~kPZn ,0ă|~k|ăch´
2

ν`1

|Âp~J0,~kq|
|~k ¨ ~ωh|

d`1
.

We have previously shown in the proof of Theorem 3.2.3 that the sum is an O
´

1
Td`1

¯

quantity and
řn´1

j“0
1
nξ

´

j
n

¯

Ñ
ş1

0 ξpxq dx and can thus be also bounded by a constant, so

this sum is O
´

1
Td`1

¯

.
The second sum above is just the sum of exponentially decaying Fourier coefficients,

which decays as O
´

exp
´

h´
2

ν`1

¯¯

, clearly dominated by our previous Oph2q error esti-
mate. Combining these errors, we get the desired statement.

As before, we may pick ξpxq “ e´
1

xp1´xq to replace the 1
Td`1 term by an exponentially

decaying bound in T.
The results shown here demonstrate that time discretization error is bounded byOph2q

when using the Störmer-Verlet method. Most importantly, for exponentially long times
this bound is constant, implying that our time discretization error should not increase
over a reasonable timeframe associated with an MD simulation.



Chapter 5

Quantum Mechanics and Force-Field Er-
ror

We now turn to force-field error, generally considered the most significant source of er-
ror in MD simulations [35]. Unfortunately, our understanding of force-field error, both
bounding the error associated with well-known force fields and determining which force
field would minimize such error, is still rather poor. In this chapter, we present some
recent results on hypothetical optimal bounds of force-field error.

Generally speaking, force-field error occurs because atoms move according to the rules
of quantum mechanics, not classical mechanics, and thus do not exactly follow Newton’s
second law. To better understand force-field error, we will therefore begin with a brief re-
view of quantum mechanics from a mathematical perspective. Here, we will only present
the facts cogent for our discussion of force fields; for a more thorough introduction to
quantum mechanics, see Griffiths [22].

In what follows, we assume we are in the non-relativistic regime; relativistic effects
are usually insignificant in chemistry. Following the more typical custom in quantum
mechanics, we use ~x instead of~q for positions.

5.1 Introduction to Quantum Mechanics
5.1.1 The State Space and the Schrödinger Equation
The quantum-mechanical state of an N-particle system is given by a complex-valued
wavefunction ψp~x, tq where ~x P R3N represents the position of all N particles and t P R
is time. |ψp~x, tq|2 is the probability distribution of the N particle’s positions; we’ll discuss
how to compute probability distributions of other observables later. Since this probability
distribution must be normalizable, we require

ż

R3N
|ψp~x, tq|2 d~x ă 8 (5.1)

at any given time t. Thus our wavefunction at any given time t belongs to the Hilbert
space L2pR3Nq. The inner product on this vector space is denoted

xψptq|φptqy :“
ż

R3N
ψp~x, tqφp~x, tq dx

at a given time t [23].
There are many ways to motivate the Schrödinger Equation, either by analogy to clas-

sical mechanics or by comparison with experimental results. Either way, we get the time-
dependent Schödinger equation (TDSE)

ih̄
B

Bt
ψp~x, tq “ Hψp~x, tq (5.2)

41
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where h̄ is Planck’s constant and H is an operator on our Hilbert space defined by

Hψp~x, tq “ ´
N
ÿ

i“1

h̄2

2mi
∆iψ`Vψ. (5.3)

Here, mi and ∆i are the mass and Laplacian associated with the ith particle and V is the
exact potential. Essentially all potentials we will deal with will be electromagnetic.

We would like to solve this equation given some initial conditionψ|t“0 “ ψ0 to findψ
at all times. Our solution must not only solve the Schrödinger equation but also conserve
probability, or continue to be a probability distribution at all times. Thus we require that
xψptq|ψptqy is constant.

Theorem 5.1.1. Probability is conserved, or xψptq|ψptqy is constant, ifψ satisfies the Schrödinger
equation and H is symmetric, i.e.

xHϕ|φy “ xφ|Hϕy

for all functionsφ,ϕ P L2pR3Nq.

Proof from Gustafson and Sigal [23]. Assuming that ψ satisfies the Schrödinger equation,
we have

d
dt
xψptq|ψptqy “ x 9ψptq|ψptqy ` xψptq| 9ψptqy “

B

1
ih̄

Hψptq
ˇ

ˇ

ˇ

ˇ

ψptq
F

`

B

ψptq
ˇ

ˇ

ˇ

ˇ

1
ih̄

Hψptq
F

which is zero for all times t iff xHφ|φy “ xφ|Hφy for all φ (since ψp0q can be anything
we like). This is true iff H is symmetric by standard arguments using the polarization
identity.

The other condition we need for dynamics to exist, i.e. for the TDSE to have a solution,
is for our Hamiltonian to be self-adjoint. To prove this, we assume standard results about
the existence of exponentials of operators; for their proofs, see [23].

Theorem 5.1.2. Dynamics exist iff H is self-adjoint.

Proof Outline from Gustafson and Sigal [23]. Recall the exponential operator eA “
ř8

n“0
An

n! .
This is well-defined in general using approximations of A by bounded operators [23].
Further, if A is self-adjoint, then eiA is unitary, where an operator U is unitary if UU˚ “

U˚U “ id. Thus, if H is self-adjoint, then Uptq :“ e´
i
h̄ Ht exists and is unitary. We may

now define ψptq “ Uptqψ0 for our initial conditions ψ0. A straightforward computation
shows that

ih̄
B

Bt
e´

i
h̄ Htψ0 “ He´

i
h̄ Htψ0

so this solution satisfies the Schrödinger equation. This can also be checked to conserve
probability.

Thus we will require that our Hamiltonians be self-adjoint. The Hamiltonian describ-
ing molecular systems does satisfy this property.
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5.1.2 Observables
Now that we understand dynamical properties of our system, we need to talk about how
to measure observables. Observables in quantum mechanics correspond to self-adjoint
operators.

Example 5.1.3. Examples of observables:

• The position operator x j in the jth coordinate: ψ ÞÑ x jψ.

• The momentum operator p j in the jth coordinate: ψ ÞÑ ´ih̄ B
Bx j
ψ.

• The Hamiltonian operator H.

• The angular momentum operator L j “ pxˆ pq j.

The commutator of any two operators is defined as rA, Bs “ AB´ BA. For example,

rx j, p js “ ih̄. (5.4)

This is the canonical commutation relation and equivalent to the standard uncertainty
principle [23].

We can compute the expectation value of any observable by computing

xAy “
xψ|Aψy
xψ|ψy

.

This corresponds to a weighted integral over a probability distribution; the essential dif-
ference between classical and quantum mechanics is that our probability “distribution”
may now be complex-valued [23].

The time evolution of this expectation value may be computed using the Heisenberg
equation

d
dt
xAy “

B

ψ

ˇ

ˇ

ˇ

ˇ

i
h̄
rH, Asψ

F

. (5.5)

Applying Equation 5.5 to x j, p j and using Equation 5.4 yields the system

m
d
dt
xx jy “ xp jy ,

d
dt
xp jy “

B

´
d

dx j
V
F

which is the quantum-mechanical analog of Hamilton’s Equations (equations 2.5) [23].

5.1.3 Spectra of Operators
The most efficient and standard way of solving the Schrödinger Equation is by under-
standing the spectrum of the Hamiltonian. Here we review some results from operator
spectral theory before describing how understanding the spectrum of the Hamiltonian
helps us solve the Schrödinger Equation. We omit the proofs of many of these results as
they are tangential to our discussion.

We will for now specialize to a one-particle system and later generalize to multi-
particle systems.



CHAPTER 5. QUANTUM MECHANICS AND FORCE-FIELD ERROR 44

Definition 5.1.4. The spectrum of an operator A on a Hilbert space H is the set σpAq of
λ P C such that A´ λ is not invertible, i.e. has no bounded inverse.

The complement of the spectrum is called the resolvent set of A ρpAq and for λ P ρpAq,
pA´ λq´1 is the resolvent of A.

The first result we need is a better characterization of the spectrum of a self-adjoint
operator:

Theorem 5.1.5 (Weyl). The spectrum of A consists of λ such that:

1. pA´ λqψ “ 0 for someψ P H. Then λ is an eigenvalue,ψ is an eigenvector, and λ is in the
point spectrum or discrete spectrum. Further, λ is isolated and has finite multiplicity.

2. There exists a Weyl sequence tψnu Ă H, or a sequence where

||ψn|| “ 1, ||pA´ λqψn|| Ñ 0

as n Ñ 8, and xφ|ψny Ñ 0 for all φ P H as n Ñ 8. In this case, λ is in the continuous
spectrum or essential spectrum.

A proof may be found in Hislop and Sigal [29]. Note further that the spectrum of a
self-adjoint operator is real.

Example 5.1.6. We can compute the spectra of some simple operators here in L2pR3Nq:

1. σpx jq “ σcpx jq “ R. It’s easy to see that x j has no eigenvalues. For any λ P R, we can
construct a Weyl sequence for x j and λ. Work in one dimension for now (ignoring
all the others). Pick ψnpxq “

?
nφpnpx´ λqq for φ any fixed non-negative function

on r´1, 1s such that
ş

|φ|2 “ 1. It’s easy to verify that this is in fact a Weyl sequence,
so we have the desired [23].

2. σpp jq “ σcpp jq “ R. We could construct another set of Weyl sequences, but just
note that p j and x j are conjugates by the Fourier transform, which is unitary, and
conjugating by a unitary transformation preserves the spectrum [23].

3. Given continuous V : R3 Ñ C, the spectrum of the corresponding multiplication
operator is the closure of rangepVq. The same Weyl sequence as in the first part
works here as well.

4. σp´∆q “ σcp´∆q “ r0,8q. This is equivalent to solving the Helmholtz equation.

Once we can compute the spectra of an operator, we may then compute its probability
distribution. Given an operator A, we can compute eigenstates of that operatorψx for all
elements of the spectrum x P σpAq and expand any particular wavefunction in terms of
those eigenstates

ψ “

ż

σpAq
cpxqψx
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for some coefficients cpxq. Then the probability distribution function is defined to be
|cpxq|2, assuming that our wavefunction is normalized initially. We can see that this does
get the desired expectation value noted previously.

We will need a slightly stronger criterion to find the spectrum of the Hamiltonian,
which holds for Schrödinger Hamiltonians.

Theorem 5.1.7. Given H “ ´ h̄2

2m∆`V with real potential Vp~xq continuous and bounded from
below, then σcpHq consists of λ for which there exists a spreading sequence tψnu. A spreading
sequence is identical to a Weyl sequence, but instead of the third condition above we require that
for any bounded set B, supppψnq X B “ H.

The proof of this may also be found in Hislop and Sigal [29]. We can now fully classify
the spectra of the Hamiltonians we are interested in. Note that all electromagnetic poten-
tials go to 0 at x “ 8, so all force fields are expected to approach 0 at 8. In this case, we
have the following:

Theorem 5.1.8. Let V : R3 Ñ R be a continuous function with Vpxq Ñ 0 as |x| Ñ 8. Then:

1. H “ ´∆`V is self-adjoint on L2pR3Nq.

2. σcpHq “ r0,8q.

Proof. Verifying that H is self-adjoint can be found in Hislop and Sigal [29]; the main
challenge is checking that the domains match, since H is manifestly symmetric.

For the second part, note that

||pH ´ λqψn|| ´ ||Vψn|| ď p´∆´ λqψn|| ď ||pH ´ λqψn|| ` ||Vψn||

using the triangle inequality. If the ψn form a spreading sequence, then ||Vψn|| Ñ 0 by
the given condition, which is true iff λ P σcp´∆q. We’ve already computed that σcp´∆q “

σcpHq “ r0,8q.

5.1.4 Spectra and Dynamics
Now that we have derived the spectrum of our Hamiltonian, we’ll use it to understand
the evolution of our system. Spectral theory tells us that L2pR3q is the direct sum of the
span of eigenfunctions of H Spanpeigenfuncq and their orthogonal complement SpanpeigenfuncqK;
further, in SpanpeigenfuncqK, H has a purely continuous spectrum.

Suppose our initial wavefunctionψ0 P Spanpeigenfuncq. We know thatψ “ e´
i
h̄ Htψ0.

We claim that for any ε ą 0 there exists an R such that inft
ş

|x|ďR |ψ|
2 ě 1´ε.

Proof from Gustafson and Sigal [23]. Write ψ “
ř

j a jψ j given an orthonormal set of eigen-
functionsψ j with Hψ j “ λ jψ j and coefficients a j. Assume for now that this sum is a finite

sum. Then ψ “
řN

j“1 e´
i
h̄λ jta jψ j implying that for any given R we have

ż

|x|ěR
|ψ|2 “

N
ÿ

j,k“1

a jake´
i
h̄ pλk´λ jqt

ż

|x|ěR
ψ jψk ď

¨

˝

N
ÿ

j,k“1

|a jak|
2

˛

‚

1
2
¨

˝

N
ÿ

j,k“1

ˇ

ˇ

ˇ

ˇ

ˇ

ż

|x|ěR
ψ jψk

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚

1
2
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by the Cauchy-Schwarz inequality. The first factor is just
ş

|ψ0|
2 by the definition of the

a j. For any ε ą 0, we can pick R such that
ˇ

ˇ

ˇ

ş

|x|ąRψ jψk

ˇ

ˇ

ˇ
ď 1

N
ε

ş

|ψ0|
2 allowing us to bound

ş

|x|ěR |ψ|
2 ď ε as desired. If our sum is infinite, a continuity/convergence argument

completes the proof.

Thus such aψ remains essentially localized for all time and is known as a bound state.
On the other hand, if ψ0 P SpanpeigenfuncqK, then for all R,

ş

|x|ďR |ψ|
2 Ñ 0 as t Ñ 8

where the convergence is in the sense of the ergodic mean. This result is known as the
Ruelle theorem and such a state ψ is known as a scattering state, as it eventually leaves
any fixed ball of space. A proof of the Ruelle theorem may be found in Hislop and Sigal
[29].

Suppose we are now analyzing a molecular system. Positive energy systems make
no physical sense, since the rest state of all electrons/protons being infinitely far away
would be favorable. By Theorem 5.1.8 and the above analysis, we may safely ignore such
states, i.e. all scattering states. We are thus left with looking at the bound states. Once we
compute the bound states of our system, we may use a calculation similar to that of the
proof above to simulate our system by projecting onto the appropriate eigenfunctions.
Thus the problem of simulating our system reduces to finding eigenstates of the Hamil-
tonian, with eigenvalues known as eigenenergies. This leads us to the time-independent
Schrödinger-Equation (TISE)

Hψ “ Eψ. (5.6)

The goal of the field of quantum chemistry is to solve this equation. As we will see,
identifying the correct force field for MD simulation requires that one make a significant
approximation to this equation.

5.1.5 Multi-particle Systems
The generalization to multi-particle systems has a few complications that are important
to note. The Hamiltonian becomes

H “ ´

N
ÿ

i“1

h̄2

2mi
∆i `V

where V : R3N Ñ R is now the potential of all the particles. However, our state space
has now changed. An important physical principle known as the Pauli exclusion prin-
ciple requires that all wavefunctions of fermions (electrons, protons, and neutrons) be
antisymmetric, i.e. ψpx1, x2q “ ´ψpx2, x1q. Thus our state space is now a subspace of
L2pR3Nq, not the whole space. This antisymmetrization also makes it very difficult to
separate out the electrons while solving the Schrödinger Equation exactly.

The spectral analysis above also becomes more complicated in the multi-particle case
[23]. It is important to separate out the motion of the center of mass from that of the rest of
the system. Once that is done, results similar to Theorem 5.1.8 hold for molecular systems
and in particular we always have an infinite number of bound states. The scattering states
change considerably, but we will not be concerned with those for our purposes.
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Thus solving Equation 5.6 is a very difficult problem, since it is a system of 3N cou-
pled partial differential equations, where N is the number of relevant particles, and we
cannot easily separate it into simpler differential equations in general. Therefore, special
methods must be used in order to understand solutions. These algorithms are the field
of quantum chemistry; in general, they will only find ground-state energies accurately.
Fortunately, we’ll see that that is all we need for MD simulations.

5.2 Connecting Quantum Mechanics and Force Fields
Now that we have developed the basic quantum mechanical theory to understand how
molecules actually behave, we will turn to understanding exactly how force fields and
molecular dynamics approximates the true quantum-mechanical behavior of a system of
molecules, which will help us understand potential sources of error in developing force
fields. We will find that computing ground states of chemical systems will be impor-
tant in determining force fields. The goal of this section is to discuss errors associated
in connecting force fields with quantum mechanics and provide a rigorous bound on er-
rors from nuclear quantum effects, one type of error for which mathematical bounds are
already known.

For simplicity in the following sections, assume that the N nuclei have the same mass
M and the electrons have mass m. The differing masses add a few additional scaling
factors of M

1
2 but do not significantly affect the results.

5.2.1 The Born-Oppenheimer Approximation
This discussion largely follows Heller [27].

The fundamental idea behind the Born-Oppenheimer approximation is that nuclei are
in general much more massive than electrons, i.e. M " m. Given this, consider the exact
Hamiltonian

Hp~R,~rq “ Knucp~Rq ` Kelecp~rq `Vp~R,~rq

where ~R is the nuclear position and~r is the electronic position. Explicitly, we have

Knucp~Rq “ ´
h̄2

2M
∆~R

Kelecp~rq “ ´
h̄2

2m
∆~r

Vp~R,~rq “
ÿ

iă j

k
|~Ri ´ ~R j|

`
ÿ

iă j

k
|~ri ´~r j|

´
ÿ

i, j

k
|~Ri ´~r j|

(5.7)

by Coulomb’s law (ignoring relativistic and spin-related corrections). As discussed pre-
viously, we now have an infinite number of eigenfunctions of H, since H is self-adjoint.
We will assume that our initial state is a bound state.

Suppose that Ψkp~R,~rq constitute all the eigenstates of the Hamiltonian H with eigenen-
ergies Ek. For every Ψk, we may write

Ψkp~R,~rq “
ÿ

i, j

cki jψip~R;~rqχi jp~Rq (5.8)
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where ψip~R;~rq is the ith electronic wavefunction for a given nuclear geometry ~R (hence a
function with parametric dependence on both i and ~R) and χi jp~Rq is the jth nuclear wave-
function on the ith electronic potential surface determined by ψip~R;~rq. This expansion is
always true; it is a consequence of completeness of the product of electronic and nuclear
wavefunctions. To avoid convergence issues in the subsequent steps, it’s common to ap-
proximate the sums as finite since we need to do so for numerical computations anyway.
We will further assume that ψip~R;~rq change smoothly with the nuclear coordinates ~R.

Rearrange Equation 5.8 to get

Ψkp~R,~rq “
ÿ

i

ψip~R;~rqφkip~Rq, φkip~Rq “
ÿ

j

cki jχi jp~Rq. (5.9)

ψip~R;~rqmust satisfy the TISE for the electronic Hamiltonian from Equation 5.7, so

pKelecp~rq `Vp~R,~rqqψip~R;~rq “ λip~Rqψip~R,~rq (5.10)

for some electronic eigenenergies λip~Rq. We want to figure out what equationφkip~Rqmust
satisfy.

Plugging in Equation 5.9 to the TISE and using Equation 5.10, we have
ÿ

i

pKnucp~Rq ` λip~Rqqψip~R;~rqφkip~Rq “ Ek
ÿ

i

ψip~R;~rqφkip~Rq.

Define the electronic inner product, denoted by xyr, to be the same as the normal inner
product but integrating only over~r, not ~R. We then have

C

ψi1p~R;~rq

ˇ

ˇ

ˇ

ˇ

ˇ

Knucp~Rq

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

ψip~R;~rqφkip~Rq

G

r

`
ÿ

i

λip~Rqφkip~Rqδi1i “
ÿ

i

Ekφkip~Rqδi1i

by normalization. Simplifying, we get
C

ψi1p~R;~rq

ˇ

ˇ

ˇ

ˇ

ˇ

Knucp~Rq

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

ψip~R;~rqφkip~Rq

G

r

“ pEk ´ λi1p~Rqqφki1p~Rq. (5.11)

The LHS of Equation 5.11 has potentially non-diagonal terms, while the RHS is en-
tirely diagonal with respect to the i coordinates. Specifically, we may expand the LHS
to

´
h̄2

2M

C

ψi1p~R;~rq

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

p∆~Rψip~R;~rqqφkip~Rq ` 2
ÿ

i

∇~Rψip~R;~rq ¨∇~Rφkip~Rq `
ÿ

i

ψip~R;~rqp∆~Rφkip~Rqq

G

r

.

The Born-Oppenheimer approximation consists of ignoring the contributions from
the first two terms of this expansion. These terms are thought to be small since nuclei,
much more massive than electrons, move much more slowly than electrons and thus
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electronic states change slowly with nuclear position. Applying this approximation yields
the equation

´
h̄2

2m
∇~Rφki1p~Rq “ pEk ´ λi1p~Rqqφki1p~Rq.

This is a Schrödinger equation on a modified potential surface λi1p~Rq. Thus we have
separated electronic and nuclear motion in our wavefunction.

Assuming the Born-Oppenheimer approximation implies that we may understand the
dynamics of chemical molecules by first solving for the electronic energy states λi1p~Rq and
then simulating nuclear motion on these modified energy states. This is very similar to
MD, where we classically simulate nuclear motion on a background potential determined
by electronic structure. Thus one of the most natural approaches to force field develop-
ment is to compute electronic structure ground states, use that as a force field, and run
classical simulations on this potential surface. This is the approach that we will examine
closely in the remainder of this chapter.

We note that the Born-Oppenheimer approximation does break down when the di-
agonal terms are nontrivial. These occur primarily at conical intersections or potential
crossings, where ground and excited state electronic energy surfaces intersect or come
close to each other. These situations are uncommon chemically, but a discussion of them
can be found in Heller [27] and an examination of their effect on the accuracy of MD
simulations can be found in Bayer et al. [5].

5.2.2 Errors in Developing Born-Oppenheimer Force Fields
As outlined above, the most common approach to developing force fields for molecu-
lar dynamics simulations is by attempting to compute λ0p~Rq, the ground-state electronic
energy. In subsequent sections, we will examine the error resulting from this approach.
However, we would like to first discuss some of the challenges surrounding performing
this computation and potential sources of error that may result. A brief summary of these
challenges follows; note that the exact error will depend on the force field in question [35]:

1. Errors in quantum chemistry computations. As noted above, it’s impossible to
compute λ0p~Rq exactly, thus approximate techniques using either the variational
method or density functional theory must be relied on. The accuracy of these quan-
tum chemistry computations inherently limits the accuracy of the resulting force
field.

2. Chemical transferability. It is generally unfeasible to perform these quantum chem-
istry computations on large systems and undesirable to repeat them for every sys-
tem under simulation. Thus scientists assume that smaller systems with similar
molecules (and thus a similar chemical environment around each atom) will result
in similar force fields as the larger system; this assumption is known as chemical
transferability. While in general it is reasonable (electronic ground state energies
rarely depend on far-away nuclei that don’t affect the potential much), determining
what the similar molecules should be is difficult and often a source of error.
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3. Functional forms of force fields. The common functional forms of force fields in-
troduced in Chapter 1 were not rigorously derived from quantum mechanics; they
are approximations for empirical data that are generally not very accurate. While
it’s not difficult with modern computational curve-fitting to fit a curve of this form
to any set of quantum chemistry data, usage of the wrong functional form can lead
to large errors in the force field, especially when combined with chemical transfer-
ability. Modern force fields often use more exotic and more complicated functional
forms to try to rectify this error.

4. Multi-body effects. In particular, multi-body effects, or effects caused by interac-
tions of multiple molecules that are not accounted by pairwise additive potentials,
have proven difficult to model at any stage. Quantum chemistry calculations do
not model them well and most force fields ignore them entirely due to the compu-
tational cost.

A variety of methods have been developed to circumvent some of these issues by com-
bining quantum mechanics and molecular dynamics in various ways. QM/MM methods
attempt to model certain parts of the system quantum mechanically and the rest using
molecular dynamics, and purely ab initio molecular dynamics explicitly runs electronic
structure computations at each stage of the simulation to compute λ0p~Rq and determine
the appropriate force without using a force field. These methods are significantly more
computationally expensive than MD, and thus much less popular.

It’s also important to note that some more modern force field developers do not at-
tempt to determine λ0p~Rq at all, but use experimental parameters to determine constants
in certain functional forms. It is extremely difficult to make rigorous statements about the
accuracy of these force fields.

We will now consider errors that result even from using a completely accurate λ0p~Rq
to measure an observable. All methods derived from quantum mechanics will fall prey
to these errors.

5.2.3 Wigner Transforms and Weyl Quantization

Suppose we could accurately determine λ0p~Rq. Suppose also that the Born-Oppenheimer
approximation holds reasonably well (i.e. we are far from a conical intersection or some-
thing similar). The remaining errors in simulating our system according to classical
molecular dynamics as opposed to the Schrödinger equation result from the fact that the
nuclei themselves are also quantum-mechanical in nature and do not exactly follow the
classical equations of motion. These errors are thus considered nuclear quantum effects.
For the remainder of this thesis, we will explore some mathematically proven bounds on
the size of nuclear quantum effects and then my current research into ways to account for
these effects. We will first introduce some auxiliary useful quantum mechanics.

For convenience and for the next two sections only we will now change to units where
h̄ “ 1. We will also add some extra factors of M´ 1

2 to account for scaling the coordinates
to make the masses identical, as noted above.

For each observable A, we need to define an associated quantum operator Â to use to
compute the quantum expectation. There are many possible choices, known as quantiza-
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tions, and it can be verified that these are all equivalent in the classical limit. We will use
Weyl quantization. Given a wavefunctionφp~Rq, we have

Âφp~Rq “
´

2πM´ 1
2

¯´3N
ż

eiM
1
2 p~R´~R1q¨~p A

˜

~R` ~R1

2
,~p

¸

φp~R1q d~R1 d~p. (5.12)

One can check that this does reduce to the classical limit as desired. Our expectation value
for our observable A is now xAy “ xφp~Rq|Âφp~Rqy as before.

We choose this quantization for the following important reason. We may define the
Wigner function

Wp~R,~pq “
´

2πM´ 1
2

¯´3N
ż

eiM
1
2 ~R1¨~p

C

φ

˜

~R`
~R1

2

¸ ˇ

ˇ

ˇ

ˇ

ˇ

φ

˜

~R´
~R1

2

¸G

d~R1. (5.13)

This function has a number of important properties. It can be verified that integrating out
momentum yields the position probability distribution

ş

Wp~R,~pq d~p “ |φp~Rq|2 and simi-
larly for integrating out position. Thus the Wigner function represents something similar
to a joint probability distribution in phase space. It isn’t quite a probability distribution,
since it can be negative; thus it is occasionally called a quasi-probability distribution [10].

Most usefully for us, it can be shown that

xAy “ xφp~Rq|Âφp~Rqy “
ż

Ap~R,~pqWp~R,~pq d~R d~p (5.14)

by grinding through the relevant integrals. Thus we can easily measure the expectation
value of our observable defined via Weyl quantization by using the Wigner function as a
probability distribution. This is particularly convenient since it will make it easy for us to
connect the quantum value of the observable to its classically measured value.

There’s another less significant issue we need to fix prior to stating our theorem. We
are not guaranteed that λ0p~Rq is a smooth function of ~R. To fix this, define

λδp~Rq “ pπδ2
q

3N
2

ż

λ0p~R´ ~R1qe´
|~R1|2

δ2 d~R1

which is now clearly a smooth function that approximates λ0 with error Opδq, assuming
λ0 is Lipschitz continuous, i.e. λ0p~Rq ´ λ0p~R1q ď C|~R´ ~R1|. This is because

λδp~Rq´λ0p~Rq “ pπδ2
q

3N
2

ż

´

λ0p~R´ ~R1q ´ λ0p~Rq
¯

e´
|~R1|2

δ2 d~R1 ď Cpπδq´
3N
2

ż

|~R1|e´
|~R1|2

δ2 d~R1 “ Opδq.

We’ll work on λδ instead.
Given an observable A and a flow computed via molecular dynamics Stp~R0,~p0q, we

may define

AMDp~R0,~p0q “ lim
TÑ8

1
T

ż T

0
ApStp~R0,~p0qq dt

as the value computed by an accurate MD simulation. We ignore time discretization error
here and assume that sampling error converges as OpT´γq for some γ ą 0. We’d like to
compare this value to

Aδ “
ż

Ap~R,~pqWp~R,~pq d~R d~p

as in Equation 5.14.
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5.2.4 Bounding Error from Nuclear Quantum Effects
We will now state the main result about the error in nuclear quantum effects.

Theorem 5.2.1. Under the conditions above, and assuming that A, AMD, and V are smooth and
grow with at most polynomial growth for large ~R,~p, and that the eigenfunctions decay faster than
polynomials in ~R outside a compact domain, we have the weighted error estimate
ż

pAδ ´ AMDp~R0,~p0qqWδp~R0,~p0q d~R0 d~p0 “ OpTpM´1
` δ´1M´2

q ` T1´γM´ 1
2 ` T´γq.

(5.15)

Proof Outline from Bayer et al. [5]. We omit some of the messy computations in what fol-
lows; details may be found in Bayer et al. [5].

The TDSE, as noted before, is solved by the operator e´iM
1
2 tĤδ . This must therefore fix

observables associated with the eigenfunction Φδ. So we have

Aδ “
ż

Φδp~RqÂΦδp~Rq d~R “
ż

Φδp~RqeiM
1
2 tĤδ Âe´iM

1
2 tĤδΦδp~Rq d~R

using Equation 5.12. We also have
ż

AMDp~R0,~p0qWp~R0,~p0q d~R0 d~p0 “ lim
TÑ8

1
T

ż T

0

ż

ApStp~R0,~p0qqWδp~R0,~p0q d~R0 d~p0 dt

“ lim
TÑ8

1
T

ż T

0

ż

Φδp~R0q{A ˝ StΦδp~R0q d~R0 dt

by Equation 5.14.
To compare these, note that S0 is the identity. We then write their difference as

ż

Φδp~R0q

„
ż t

0

d
ds

ˆ

eiM
1
2 pt´sqĤδ {A ˝ Sse´iM

1
2 pt´sqĤs

˙

ds


Φδp~R0q d~R0. (5.16)

Using the fact that d
ds A ˝ Ss “

d
dr ApSsp~Rr,~prqq|r“0, we may compute

d
ds

ˆ

eiM
1
2 pt´sqĤδ {A ˝ Sse´iM

1
2 pt´sqĤs

˙

“ eiM
1
2 pt´sqĤδ

´

Oprpp~p ¨ ~∇~R ´
~∇λδp~Rq ¨ ~∇~pqAq ˝ Sss ´ iM

1
2 rĤδ, {A ˝ Sss

¯

e´iM
1
2 pt´sqĤδ

(5.17)
where the square brackets are the commutator and Op means the Weyl quantization.

Plugging in Equation 5.17 into Equation 5.16, we can clean things up by noting that
Φδp~R0q is an eigenfunction of Ĥδ so the outer exponentials must cancel out. So we focus
on the operator in the middle. Applying the Moyal expansion to the commutator of two
Weyl operators (see details in Bayer et al. [5]), we find that

Oprpp~p ¨ ~∇~R ´
~∇λδp~Rq ¨ ~∇~pqAq ˝ Sss ´ iM

1
2 rĤδ, {A ˝ Sss “ R̂Mpsq (5.18)
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where the remainder term R̂M is

R̂Mpsq “ Op

»

–

8
ÿ

n“1

2M´n
p2iq´n

ÿ

|α|“n

p´1q|α|

α!
B
α
~R0
λδp~R0qB

α
~p0
pA ˝ Ssqp~R0,~p0q

fi

fl . (5.19)

Combining Equations 5.18 and 5.19 shows that the error

ż

˜

Aδ ´
1
T

ż T

0
A ˝ Stp~R0,~p0q dt

¸

Wδp~R0,~p0q d~R0 d~p0 “ T´1
ż T

0

ż t

0

ż

R̂MpsqWδp~R0,~p0q d~R0 d~p0 ds dt.

(5.20)
This is almost the error we want to compute, up to the previously noted bound ofOpT´δq
in the convergence of sampling error. Thus we’ll focus on bounding this error, and in
particular on bounding R̂M.

To bound R̂M, substitute A ˝ Ss ÞÑ AMD ` pA ˝ Ss ´ AMDq. Since λ0 is Lipschitz con-
tinuous and AMD grows at most polynomial in ~R, we may bound the terms in Equation
5.20. The n “ 2 term is bounded by Opδ´1M´2q, and all higher-order terms are bounded
by Opδ1´nM´nq, which is suppressed by the above bound; the n “ 1 term is bounded
by OpM´1q. Thus we integrate to get a bound of OpTM´1 ` TM´2δ´1q. The term with
A ˝ Ss´AMD is harder since A ˝ Ss may grow exponentially. But the difference is bounded
byOpT´γq as we proved above. Integrate by parts in~p0 to move derivatives to the Wigner
function. This gives us a bound of OpT1´γM´ 1

2 q (see details in Bayer et al. [5]). Combin-
ing these results gives us the desired bound.

We have thus proven that there is an error term associated with nuclear quantum
effects, even with Born-Oppenheimer force fields, but that it can be bounded. However,
this bound does not guarantee convergence to 0 at large T, especially for small masses M
like the mass of the hydrogen nucleus. It seems conceivable that there might be another
way of computing a force field that does not include such errors. We now turn to the
subject of my own research and to the last chapter of this thesis: force-field functor theory,
which will provide a way for us to answer this question.



Chapter 6

Force-Field Functor Theory

In the last chapter, we asserted that the correct force field should look something like the
lowest-energy electronic eigenstate λ0p~Rq and proved error bounds based on this. But
while it is true that physical intuition indicates this is what the force field should look like
and that in the limit of infinite nuclear mass this is accurate, we still see a significant error
term associated with nuclear quantum effects for finite nuclear mass. There have been
many computational methods developed to reduce this error [11, 42, 45, 40, 48, 34, 30,
19, 47, 12, 20, 24]. But these methods all fundamentally change the MD algorithm itself,
usually at significant computational cost.

We propose an alternative approach: develop a different force field that accurately
accounts for nuclear quantum effects. In force-field functor theory, we map a Born-
Oppenheimer force field Vp~Rq “ λ0p~Rq to an effective force field Wp~Rq that will account
for nuclear quantum effects; this map F : V Ñ W is known as the force-field functor.
In this chapter, we will prove the uniqueness and existence of this map and then discuss
an efficient way to compute it given a Born-Oppenheimer force field (since that is the
computable quantity in quantum chemistry).

Force-field functor theory applies at a constant temperature, not a constant energy.
Thus our simulations will now be NVT simulations, not NVE simulations. Further, not
all of our particles will be in the same state corresponding to the same wavefunction;
they will instead be in a mixture of states to maintain a constant temperature. Thus we
will start by briefly introducing some of the relevant physics behind modeling constant-
temperature quantum mechanical systems and then proceed to force-field functor theory.

We will reintroduce factors of h̄ for this chapter as they prove to be important and let
the masses of our particles possibly be different.

6.1 Density Matrices and Force-Field Functor Existence
6.1.1 The Density Matrix
Return to the one-particle case for now. Suppose we have a Hamiltonian H on the Hilbert
space L2pR3q. Pick an orthonormal basis ψ j. Then any state φ can be written as φ “
ř

j a jψ j and any observable A can be computed as xAy “ xψ|Aψy “
ř

m,n aman xψm|Aψny .
What if we only know the system is in stateψn with probability pn? Then our average

is given by the expression actually looks like xAy “
ř

n pn xψn|Aψny . Define the density
matrix operator

ρ “
ÿ

n
pn |ψny xψn| (6.1)

so we then have
xAy “ TrpAρq. (6.2)

54
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Note that ρ is a positive trace class operator with Trρ “ 1 by normalization. Any such
operator (not just one of the form above) corresponds to a generalized state and is known
as a density matrix [23].

Using the Schrödinger Equation, it’s easy to show that the equation of state for ρ is

i
Bρ

Bt
“

1
h̄
rH,ρs, (6.3)

known as the Landau-von Neumann equation.
In our case, H has point spectrum, so any operator f pHq for a positive function f is

a density matrix. Thus ρ “ f pHq is a time-independent solution of Equation 6.3 since
r f pHq, Hs “ 0. Thus positive functions of the Hamiltonian will be stationary solutions.

States that are of the form ρ “ |ψy xψ| correspond directly to wavefunctionsψ and are
therefore known as pure states, i.e. the probability for the system to be in the state ψ is 1.
The system can also be in a mixed state, where the population of each pure state is given
by a probability distribution, representing the fact that we have incomplete information
about our system and do not know that it is in any one pure state [23].

It is also possible to take the Wigner transform of a density matrix. To do this, we
define the Weyl transform, the inverse of Weyl quantization. For an operator Â, we have

rAp~x,~pq “
ż

e´
i
h̄~p¨~y

B

~x`
~y
2

ˇ

ˇ

ˇ

ˇ

Â
ˇ

ˇ

ˇ

ˇ

~x´
~y
2

F

d~y. (6.4)

Now, we define

Wp~x,~pq “
rρ

2πh̄
. (6.5)

One can verify using Equation 6.4 that this is the same Wigner transform as we previously
defined

Wp~x,~pq “
1

2πh̄

ż

e´
i
h̄~p¨~yψ

ˆ

~x`
~y
2

˙

ψ

ˆ

~x´
~y
2

˙

d~y.

6.1.2 Thermodynamics and the Density Matrix
The density matrix is useful for understanding thermodynamic systems, or systems with
large numbers of molecules in which we do not know exact information about all the
initial positions of the molecules. Suppose we have N particles that interact pairwise in a
volume Λ. We have a Hamiltonian HN,Λ, and we would like to take the conceptual limit
N Ñ 8. Clearly as noted above f pHN,Λq for any positive f that decays sufficiently fast is
a stationary state.

But which stationary states are stable? Most stationary states are not asymptotically
stable, so they do not provide useful physical information about our system. However,
some states are asymptotically stable and convergence to such states is very rapid. To
understand these states, we will work in the conceptual limit of N “ 8, Λ “ 8 but
fix N

|Λ|
. This is the thermodynamic limit, and the study of such states is the study of

thermodynamics.
In the absence of an external environment, stationary states with infinitely many par-

ticles are called thermal equilibrium states. They are computed by the second law of
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thermodynamics, which says that ρ is an equilibrium state iff it maximizes the von Neu-
mann entropy Spρqwhile fixing the energy Epρq “ E. The entropy is

Spρq “ ´Trpρ logρq (6.6)

where log is defined via power series. The energy is as expected Epρq “ TrpHρq.
Optimizing the entropy is a Lagrange multiplier problem in variational calculus. We

may instead minimize the Helmholtz free energy

Fpρq “ Epρq ´ TSpρq (6.7)

for a Lagrange parameter T called the temperature. We will also occasionally see the
inverseβ “ 1

kBT for a constant kB known as Boltzmann’s constant. Minimizing this yields
the family

ρT “
e´βH

ZpTq
, ZpTq “ Trre´βH

s. (6.8)

The function ZpTq is known as the partition function and can be used to derive many
important properties of the system [23]. For example,

FpTq “ FpρTq “ ´T log ZpTq.

Thus we now understand what equilibrium states we expect to see quantum-mechanically
at a given temperature T. It’s important to note that the coefficients e´βEn for each eigenen-
ergy En associated with an eigenstate ψn represent the probability of finding a particular
particle in our infinite-particle system in the one-particle state associated with ψn. There
is then a second layer of quantum-mechanical probability associated with determining
the value of any observable given the particle in the state ψn.

In the classical limit, the formalism above largely still applies. However, our states
are now particular position/momentum points, i.e. points in phase space, as opposed to
wavefunctions.

6.1.3 Existence and Uniqueness of the Force-Field Functor
We now present the main foundational result of force-field functor theory, which guar-
antees the existence and uniqueness of a classical potential that reproduces the quantum
equilibrium position-space probability distribution. This is the best we can possibly do
with an MD simulation, since the momentum-space probability distribution is fixed from
the beginning as the force field is momentum-independent.

Theorem 6.1.1. Given a Born-Oppenheimer force field Vp~xq and a temperature T, there exists
a unique effective force field Wp~xq “ F rVp~xqs such that the classical position-space probability
distribution ηcp~xq computed from Wp~xq is equal to the quantum position-space probability distri-
bution ηqp~xq computed from Vp~xq.

Proof from Babbush et al. [3]. Existence is relatively simple. We may compute our equilib-
rium density ρT as above, and then the quantum probability position-space distribution
is

ηqp~xq “ x~x|ρT~xy (6.9)
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and the classical probability distribution of any classical potential Wp~xq is

ηcp~xq “
1
Z

e´βWp~xq. (6.10)

Simultaneously solving Equation 6.10 and 6.9 yields

Wp~xq “ ´
1
β

log pZ x~x|ρT~xyq (6.11)

which shows that the functor exists.
Proving uniqueness is a bit more difficult. We proceed in two steps: we will first show

that the quantum position-space distribution is uniquely given from Vp~xq and then that
the classical potential is uniquely given from any classical position-space distribution. We
begin with a lemma.

Lemma 6.1.2 (Quantum Bogoliubov Inequality). For positive definite ρ with unit trace, we
have

Fpρq ą Fpρ0q

if F is the Helmholtz free energy and ρ ‰ ρ0, where ρ0 is the equilibrium distribution.

Proof from Babbush et al. [3]. Define

ρλ “
e´βpH`λ∆q

Tr
`

e´βpH`λ∆
˘ , ∆ “ ´

1
β

logρ´ H.

Clearly ρλ “ ρ0 if λ “ 0 and ρλ “ ρ if λ “ 1, so Fpρq ´ Fpρ0q “
ş1

0
B
BλFpρλq dλ.

We have

Fpρλq “ Tr
„

ρλ

ˆ

H ` λ∆`
1
β

logρλ

˙

´ λ Trr∆ρλs

by definition, and the first trace is stationary since ρλ is the equilibrium density matrix for
H ` λ∆. Thus we differentiate the second trace B

BλFrρλs “ ´λ Tr
”

∆ B
Bλρλ

ı

.
Define xXyλ “ TrrρλXs. Then we may compute

B

Bλ
ρλ “ ´

ż β

0
ρλr∆λpβ

1
q ´ x∆yλ1s, ∆λpβ

1
q “ eβ

1pH`λ∆q∆e´β
1pH`λ∆q.

Thus

B

Bλ
Frρλs “ λ

ż β

0
px∆∆λpβ

1
qyλ´x∆y

2
λq “ λ

ż β

0
dβ1

C

ˆ

∆λ

ˆ

1
2
β1
˙

´ x∆yλ

˙:ˆ

∆λ

ˆ

1
2
β1
˙

´ x∆yλ

˙

G

λ

using some trace identities. This integral is non-negative and can be zero iff ∆ is the unit
operator, i.e. if ρ “ ρ0. Thus we get the desired.
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Now suppose that there were two potentials rVp~xq, Vp~xq that had the same quantum
position-space probability distribution ηqp~xq. We have corresponding Hamiltonians, den-
sity matrices, and free energies rH, rρ0, rF. Then we apply Lemma 6.1.2 to get

rF “ Tr
„

rρ0

ˆ

rH `
1
β

log rρ0

˙

ă Tr
„

ρ0

ˆ

rH `
1
β

logρ0

˙

“ F` Trrρ0 rVp~xq ´ ρ0Vp~xqs.

This last term is just
ş

d~xprVp~xq ´Vp~xqqηqp~xq so we have

rF ă F`
ż

d~xprVp~xq ´Vp~xqqηqp~xq.

Interchanging variables leads to a contradiction.
For the other step, we begin with another, similar lemma.

Lemma 6.1.3 (Classical Bogoliubov Inequality). If ηcp~xq is the equilibrium density for a clas-
sical system and ηp~xq is another different density, then

Fpηp~xqq ą Fpηcp~xqq.

Proof from Babbush et al. [3]. Note that

1
β

ż

pηcp~xq log ηcp~xq ´ ηcp~xq log ηp~xqq d~x ě
1
β

ż

pηcp~xq ´ ηp~xqq d~x “ 0

by normalization and the fact that log x ě 1 ´ 1
x . Thus

A

1
β log ηcp~xq

E

ě

A

1
β log ηp~xq

E

.
Plugging in the standard formulas for the number density, this yields

B

´rEp~xq ´
1
β

log rZ
F

ě

B

´Ep~xq ´
1
β

log Z
F

which is equivalent to the desired.

Now suppose that there were two effective potentials rWp~xq, Wp~xq that led to the same
position-space probability distribution. Then

rF “
ż

ηcp~xq rWp~xq d~x`
1
β

ż

ηcp~xq log ηcp~xq d~x ă A`
ż

ηcp~xqp rWp~xq ´Wp~xqq

applying Lemma 6.1.3. We can now complete the proof in a similar fashion to the first
part.

The force-field functor theorem guarantees the existence of a unique potential Wp~xq
that classically reproduces the quantum position-space probability distribution. Since it
classically reproduces the correct quantum distribution, it will also correctly reproduce all
thermodynamic properties which depend solely or mostly on position. Dynamic prop-
erties that depend on momentum will not be correctly reproduced. Regardless, this is a
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powerful method of guaranteeing accurate computation of observables via MD simula-
tion.

Of course, this proof is essentially non-constructive, since there are few easy ways to
determine the density matrix. We will now need to find a reasonable way of computation-
ally approximating the effective potential given an original Born-Oppenheimer potential
to work with.

Note that the initial force field must approximate or be fitted to λ0p~xq, the ground-state
electronic energy term, for force-field functor theory to be valid. Thus our force field must
be fit to electronic structure data. Force fields fit to experimental parameter data may
already account for nuclear quantum effects in some empirical and approximate way;
adding force-field functor corrections will result in double-counting of nuclear quantum
effects [50].

6.2 The Wigner Expansion and Force-Field Functors
The proof of Theorem 6.1.1 makes clear that the quantum position-space probability dis-
tribution ηqp~xq is the key object to compute here. Computing the density matrix is very
difficult, so integrating that to find ηqp~xq is not generally tractable (though this is the in-
spiration for many alternative approaches to nuclear quantum effects). We instead focus
on the Wigner transform, which by Equation 6.5 is equivalent. Then, Theorem 6.1.1 tells
us that

rVp~xq “ ´
1
β

log
„
ż

Wp~x,~pq d~p


. (6.12)

where rVp~xq “ F rVp~xqs is the effective potential. In this section, we find a simple, compu-
tationally effective way of approximating the Wigner transform. We assume our potential
is analytic, as it usually is for MD simulations.

Most of the following section is copied from my recent paper, Sundar et al. [51].

6.2.1 The Wigner Expansion
We first prove the following lemma.

Lemma 6.2.1. The Wigner function Wp~x,~pq satisfies the following equation:

BW
Bt

“ ´
ÿ

k

pk
mk

BW
Bxk

`
ÿ

pλ1 ,...,λnq

Bλ1`...`λnV

Bxλ1
1 . . . Bxλn

n

´

h̄
i

¯λ1`...`λn´1

λ1! . . . λn!
Bλ1`...`λnW

Bpλ1
1 . . . Bpλn

n
. (6.13)

Here, x1, . . . , xn represent the n position coordinates and p1, . . . , pn represent the n momentum
coordinates. mi is the associated mass for the ith position or momentum coordinate.

Proof from Wigner [52]. The basic approach here is to compute the derivative directly us-
ing the definition of the Wigner function and then apply the time-dependent Schrödinger
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Equation and integrate by parts a few times.

BW
Bt

“
1

2πh̄

ż

e´
i
h̄~p¨~y

„

Bψ

Bt

ˆ

~x`
~y
2

˙

ψ

ˆ

~x´
~y
2

˙

`ψ

ˆ

~x`
~y
2

˙

Bψ

Bt

ˆ

~x´
~y
2

˙

d~y

“
1

2πh̄

ż

e´
i
h̄~p¨~y

«

´
ÿ

k

ih̄
2mk

˜

B2ψ

Bx2
k

ˆ

~x`
~y
2

˙

ψ

ˆ

~x´
~y
2

˙

`ψ

ˆ

~x`
~y
2

˙

B2ψ

Bx2
k

ˆ

~x´
~y
2

˙

¸

`
i
h̄
ψ

ˆ

~x`
~y
2

˙

ψ

ˆ

~x´
~y
2

˙ˆ

V
ˆ

~x`
~y
2

˙

`V
ˆ

~x´
~y
2

˙˙

ff

“
1

2πh̄

ż

e´
i
h̄~p¨~y

«

´
ÿ

k

ih̄
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Now let W take h̄ as a variable and consider a formal series expansion in h̄. When

h̄ “ 0 we must get the classical result e
´β

ˆ

Vp~xq`
ř

k
p2

k
2mk

˙

. For convenience, define E “

Vp~xq `
ř

k
p2

k
2mk

. Therefore we may write

Wp~x,~pq “ e´βE
` h̄W1 ` h̄2W2 ` h̄3W3 ` . . . . (6.14)

We may plug Equation 6.14 into Equation 6.13 and compare terms order-by-order in
h̄, since we expect BW

Bt “ 0 at thermal equilibrium since W is in a stationary state. Doing
so yields an infinite sequence of differential equations for all the Wi. These start with:
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(6.15)

These are inhomogeneous differential equations in each of the Wi; the homogeneous
part is always the same

ÿ

k

´
pk
mk

BWi

Bxk
`
ÿ

k

BV
Bxk

BWi

Bpk
“ 0.

This is the differential equation for the stationary nature of the classical probability distri-
bution, so its only solution is the classical probability distribution (or multiples thereof),
else classical mechanics would be overdetermined. We’ve already accounted for multi-
ples of the classical probability distribution in the constant term of the Wigner expansion,
so we may as well ignore the homogeneous part [52].

The inhomogeneous part of the W1 term’s differential equation from Equation 6.15 is
0, so W1 “ 0. The inhomogeneous part of all the odd terms in the expansion contains W1
and lower-order odd terms, so all odd terms in the Wigner expansion are 0 [52].

We can solve the W2 term’s differential equation from Equation 6.15 with a couple of
clever substitutions and an integration. We find

W2 “ e´βE

»

–

ÿ

k

˜

´
β2

8mk

B2V
Bx2

k
`

β3

24mk

ˆ

BV
Bxk

˙2
¸

`
ÿ

k,l

β3 pk pl
24mkml

B2V
BxkBxl

fi

fl . (6.16)

It is possible to solve for further terms in the Wigner expansion, but we will mostly not
need that for our work ahead [13].

Thus far, we’ve considered the Wigner expansion as a formal series expansion, with-
out claiming anything about convergence of the Wigner expansion anywhere. Under-
standing the convergence of the Wigner expansion in general or even in any particular
specific case remains an open problem, and it is not clear that the Wigner expansion be-
haves particularly well. However, we expect the Wigner expansion to be well-behaved
at higher temperatures or lower β, since that suppresses higher-order terms in the ex-
pansion. Further, empirical observations have established that the Wigner expansion, as
opposed to any other semiclassical expansion of the Wigner function, has provided ac-
curate approximations for use in simulation, so we chose to use the Wigner expansion to
help us approximate the force-field functor [32].

6.2.2 Approximations to the Wigner Expansion
Assuming truncations of the Wigner expansion are a reasonable approximation to the
full Wigner function, we may take the expansion to second-order, use Equation 6.16 to
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compute the second-order correction, and then use Equation 6.12 to compute the new
effective potential. But this effective potential would be extremely difficult to compute;
in particular, while our original potential Vp~xq is usually pairwise additive, Wp~x,~pq is not
and rVp~xq is not. Thus MD simulation algorithms would need to compute N-body terms,
resulting in a runtime of OpNNq. Thus we will need to make further approximations
using Taylor series expansions. Fortunately, it is easy to characterize, justify, and verify
these assumptions for any force field.

Now suppose our potential is the sum of pairwise terms V “
ř

i, j Vi j where Vi j only
depends on xi and x j. Then we may rewrite Equation 6.16 as

Wp~x,~pq « e´βEp~x,~pq

»

—

–
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¨

˚

˝

ÿ
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‚

2
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‹

‚
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βpk pl
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˛

‹

‚

fi

ffi

fl

.

(6.17)
The first and third terms in the second-order correction are immediately sums of the ap-
propriate correction for each pairwise potential individually. The second term has the
sums of each pairwise contribution, along with additional three-body terms of the form
ř

j,k,l
β

12mk

BVjk
Bxk

BVkl
Bxk

. We will see that for the potentials we will test our methods on these
terms are often smaller than the others in the Wigner expansion by a significant margin
since first derivatives are smaller than second derivatives, so we will ignore the non-
additive terms and assume that the Wigner expansion is also pairwise additive for our
purposes. If this assumption does not hold, it is simply an additional force to be added.
For convenience, we write

Wp~x,~pq “ e´βEp~x,~pq

»

–1` h̄2β2
ÿ

j,k

Wjk ` . . .

fi

fl (6.18)

where Wjk corresponds to the second-order Wigner correction from Vjk.
Now let us compute the effective potential. We have
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log
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‚

where we use the first-order Taylor series approximation log p1`
ř

i xiq «
ř

i logp1 `
xiq. This approximation is valid anywhere the correction from the Wigner expansion is
relatively small, i.e. at high enough temperatures such that the Wigner expansion itself is
valid. The first term is the classical potential up to normalization and the second term is
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the pairwise sum of the individual contributions to the effective potential. Thus under the
two approximations we have made, we see that the N-body problem reduces successfully
to a pairwise sum of 2-body problems.

The calculations done here can be trivially generalized to potentials that are the sums
of multi-body interactions (like bond angles or torsions). Thus we must check that the
approximations made in this section are still valid for the more complicated potential; if
they are, then our method can be applied by simply computing the correction to each
individual term using Equation 6.16. Even if our first assumption of the product-of-first-
derivative terms being negligible fails, we can simply add those terms in; derivatives are
generally short-range, so these terms would continue to be easy to compute. We have not
yet found a way to generalize this method to potentials that are not pairwise additive.

6.2.3 Empirical Verification on Neon
We proceed to test the Wigner expansion approximation to the force-field functor on a
Neon force field. Neon is spherically symmetric, allowing for convenient computations.
Specifically, we found that for a spherically symmetric system, the non-normalized cor-
rection term is

W2pr, p,θq “
e´βEpr,p,θq

24m2r

˜

´6m
BV
Br
`βp2 sin2θ

BV
Br
`mrβ

ˆ

BV
Br

˙2

´ 3mr
B2V
Br2 `βp2r cos2θ

B2V
Br2

¸

.

(6.19)
Here, r is radial distance, p is the magnitude of the momentum, andθ is the angle between
position and momentum.

We test our method on a Neon force field. Neon’s interatomic potential is spherically
symmetric and a highly accurate force field for Neon was derived by [28] by fitting func-
tional forms to high-quality CCSD(T) electronic structure data.

We began by numerically computing the effective potential at various temperatures
as shown in Figure 6.2.1a. We note two characteristics of the effective potential which
can be explained by quantum phenomena: First, the repulsive wall as r Ñ 0 is less steep
in the effective potential than in the classical potential. This is due to the fact that the
quantum wavepacket can enter the classically forbidden region E ă Vprq. Second, the
well is shallower, due to the zero-point energy.

Moreover, the equilibrium distance is slightly longer in the effective potential than
in the classical potential. As we show below, this has important thermodynamic conse-
quences.

We note a bump in the effective force field at T “ 25 K. This is likely an artifact due
to use of only the second-order expansion and neglecting the N-body terms, and not a
reflection of the full quantum effective force field. This bump is significantly larger in the
effective force than in the potential. The fourth-order correction does reduce the bump
in the repulsive wall while not significantly affecting the location or depth of equilibrium
length and thus shows an improvement over the second-order term; a graph is shown in
Figure 6.2.1b.
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(b) Fourth-Order Correction.

Figure 6.2.1: Classical and effective force field for Neon at T “ 25 K, 35 K, and T “ 44 K.
The red dotted curve is the classical potential from Hellmann et al. [28], the green curve
is the effective potential numerically computed using the Wigner expansion to second
order, and the blue curve adds corrections to fourth order on the bottom for T “ 25 K.
The change in shape and shallower well can be explained by the wavepacket entering
the classically forbidden region and the zero-point energy, respectively. The fourth-order
correction reduces the bump in the repulsive wall, thus showing an improvement from
the second-order.
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6.2.3.1 Radial Distribution Function

The first parameter we chose to measure in simulation was the radial distribution function
(RDF). Given a system of N liquid or gas spherically symmetric particles in a volume V,
the RDF gprq is defined as

nprq “ 4πr2ρgprq dr (6.20)

where nprq is the number of particles in a spherical shell of radius r and thickness dr
and ρ “ N

V is the average number density. gprq thus represents the correlations between
particle positions as a result of the interparticle potential; should there be no potential
(as in the approximation of an ideal gas), then the density function would simply be
4πr2ρ dr. The RDF is strongly potential-dependent and thus a good initial candidate for
an experimental observable to use in verifying our force-field functor.

Computing the RDF from a simulation is also straightforward, since it is a purely
position-dependent observable. We carry out the number-counting suggested in Equa-
tion 6.20 to compute nprq for some fixed, very small dr, and then compute gprq using
Equation 6.20. The result is then averaged across all frames.

We ran NPT simulations with a Monte Carlo barostat to fix the pressure; each time
step was 2 fs. The initial condition was a cubic lattice with atoms spaced 0.3 nm apart
to emulate the density of the liquid phase. Since all experimental measurements were
done on liquid Neon, we chose to begin all simulations with an approximately liquid-
phase initial condition. We ran the simulation for 100 000 steps (using the initial 10 000
for equilibration) and verified that the simulations converged by checking the computed
density.

For verification of our results, we compared both with experimental results from Bellissent-
Funel et al. [6] and de Graaf and Mozer [14], purely classical MD, and an alternative sim-
ulation method, Ring Polymer Molecular Dynamics (RPMD), that accounts for nuclear
quantum effects by modifying the underlying MD algorithm itself. We omit the details
of how RPMD works here; they can be found in Allen and Tildesley [1]. RPMD simula-
tions replace every atom with P beads, or copies, and run molecular dynamics; we chose
P “ 32. The computational time complexity of RPMD is OpN2Pq, so we see a 32 times
slowdown using RPMD, as opposed to the force-field functor theory method. We will see
that using force-field functor theory causes no loss in accuracy as compared to RPMD.
Figure 6.2.2 shows radial distribution functions (RDF) for liquid Neon at T “ 26.1 K,
T “ 35.05 K, and T “ 42.2 K. The classical MD simulation with a Born-Oppenheimer
force field will be called C-FF for short and the classical MD simulation with our effective
force field will be called E-FF.

At T “ 35.05 K and T “ 42.2 K, E-FF is roughly as accurate as RPMD, with both being
a significant improvement relative to C-FF. In particular, the location and height of the
first peak obtained by E-FF are more precise than those derived by C-FF. The shift and
lower height of the peak are caused by quantum corrections which shift the equilibrium
position and reduce the depth of the well in the effective potential described above.

At T “ 26.1 K, E-FF, while still a significant improvement over C-FF, is somewhat
worse than RPMD. Specifically, the location and height of the peak are relatively accurate,
but the bump in the potential noted above results in a similar bump in the RDF. Inaccu-
racies in both RPMD and E-FF at this temperature indicate more beads and higher-order
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Figure 6.2.2: Radial distribution function as computed by C-FF, E-FF, and RPMD. In each
plot, the red curve is computed by C-FF, the green curve is computed by E-FF, the black
curve is computed by RPMD, and the blue curve is experimentally determined from [6]
and [14]. The right side focuses on just the first peak. In all cases, the height and location
of the first peak are more accurately determined by E-FF and RPMD than by C-FF. E-FF
demonstrates similar accuracy as the significantly slower RPMD.

terms are necessary for an accurate computation of the RDF. We verified that a 4th-order
computation of the RDF reduced the size of the bump at T “ 26.1 K.

6.2.3.2 Equation of State

The next parameter we chose to compute was the equation of state for Neon, or the re-
lationship between density and pressure for a variety of temperatures. We used similar
NPT simulations as we did in measuring the radial distribution function. The initial con-
dition in all cases was a cubic lattice with atoms spaced 3 nm apart to emulate the density
of the gas phase. Experimental measurements were done in both liquid and gas phase;
we ran the simulation for 1 000 000 steps (using the initial 100 000 for equilibration) and
verified convergence by checking the density values.

Figure 6.2.3 shows the computed equation of state for Neon at T “ 36 K and T “

40 K. Experimental data [21] is compared to densities for both the classical and effective
potential [17]. These values span liquid and gas phase.

Both E-FF and C-FF were accurate on gas-phase densities. The maximum error relative
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Figure 6.2.3: Equation of state as computed by C-FF and E-FF at T “ 36 K, 40 K. The red
points were computed by C-FF, the green points by E-FF, and the blue points experimen-
tally determined by [21]. The gas-phase density points from all three methods are too
close to be distinguished. E-FF is significantly more accurate in liquid-phase, reducing
the error relative to experimental data from 10% for C-FF to 2% for E-FF.

to the experimental data for C-FF is around 1% and for E-FF around 2%. This is somewhat
expected since gas-phase densities do not depend much on the force field. In liquid phase,
C-FF significantly overestimates the experimental density by as much as 10% while E-FF
only overestimates the experimental density by around 2%. This is due to the shift in
equilibrium position described above. Adding additional terms to the Wigner expansion
should further reduce the error in calculated density.

6.2.3.3 Vapor-Liquid Coexistence Curve

The last parameter we calculated was the vapor-liquid coexistence curve, or the tem-
perature/pressure combination at which gas and liquid phase coexist. At atmospheric
pressure, this point is known as the boiling point. This is an observable that cannot be
easily mathematically related to a function of position and momentum, unlike the density
or RDF. Verifying the accuracy of the force-field functor on the vapor-liquid coexistence
curve suggests broader applicability of the functor beyond the observables directly guar-
anteed to include nuclear quantum effects by Theorem 6.1.1. In this section, we assume
some background in the statistical mechanics of phase transitions, since introducing that
material would take us too far afield.

Computing the vapor-liquid coexistence curve cannot be done reliably by MD simula-
tion. We therefore used Gibbs Monte Carlo (MC) simulations instead [44, 43, 38]. Normal
MC perturbation steps are performed as in a typical NVT simulation, but we also ran-
domly transfer volume and particles between the two boxes to equilibrate pressure and
chemical potential. By the definition of a phase transition (known as the Gibbs condition),
both boxes will end up on the vapor-liquid coexistence curve. We then measured density
and pressure (from the virial theorem [1]) to compute the phase transition points.

This simulation was implemented on MCCCS-Towhee [37]. Far from the critical point,
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Figure 6.2.4: Vapor-liquid coexistence curve for Neon, as computed by Gibbs MC simula-
tion with both C-FF and E-FF. The red curves are computed by C-FF, the green curves by
E-FF, and the blue curves experimentally determined by [49]. E-FF is significantly more
accurate in all cases. It reduces the average error relative to the experimental data: from
40% to 11% for the gas phase density; from 12% to 5% for the liquid phase density; from
33% to 7% for the pressure.

we followed the guidelines of Morales et al. [38] in setting up the simulation. We began
with one empty box and one box full of 1000 Neon atoms; both boxes were cubes with
side length 4 nm. At the end of the simulation, around 10% of the atoms were in vapor
phase, as suggested by Morales et al. [38] for the most rapid convergence. We set the
probability of a perturbation to the default value and ran the simulation for 10 000 cycles,
sufficient to guarantee convergence. We verified convergence by checking that the density
values converged appropriately.

It is known that Gibbs MC simulations fail close to the critical point [15] since the



CHAPTER 6. FORCE-FIELD FUNCTOR THEORY 69

two phases are very similar, causing the boxes to interconvert between phase frequently.
At T “ 43 K, we adjusted our analysis for the effective potential simulation to use a
density probability distribution to identify liquid and vapor phase densities and ignore
all intermediate phases [15]. We did not analyze T “ 44 K since it was too close to the
critical point for the effective potential simulation. The classical simulation did not exhibit
any behavior characteristic of the critical point, so no adjustments were needed.

E-FF is significantly more accurate in determining both the density and the pressure
of the vapor-liquid coexistence point, as shown in Figure 6.2.4. Specifically, C-FF con-
sistently overestimates the liquid density by an average percent error of 12% relative to
experimental data, while E-FF consistently overestimates it by only 5%. This effect can
be partly explained by the density deviations observed when computing the equation of
state. C-FF underestimates gas density by an average percent error of 40% relative to the
experimental data, while E-FF underestimates it by 11%. Finally, C-FF underestimates the
pressure by an average percent error of 33% relative to the experimental data while E-FF
underestimates it by 7%. Larger errors at lower temperature suggest that the effective
force field would be improved by using higher-order corrections.

We also note that E-FF began exhibiting critical behavior, i.e., transitions between va-
por and liquid phase, at around T “ 43 K, very close to the experimental critical point of
Tc “ 44.40 K. C-FF did not exhibit similar behavior even at T “ 44 K. We chose not to
measure the critical point directly due to inaccuracies with Gibbs MC simulations close
to the critical point [15], but this result suggests that C-FF also overestimates the critical
point.

Our empirical work with Neon, our analytic work with the Wigner expansion, and
the fundamental results of force-field functor theory makes clear that we have a new way
of accurately and efficiently accounting for nuclear quantum effects. Further, the work
we have done above shows that generalizing these methods to more complicated force
fields should be possible, provided the assumptions that we have outlined above hold
for those more complicated force fields. Application of this method would significantly
improve the accuracy of most MD simulations by avoiding errors associated with nuclear
quantum effects as outlined above.



Chapter 7

Conclusions and Future Work

Fully understanding the errors associated with molecular dynamics simulations is cer-
tainly a work-in-progress. While bounds have been derived to characterize almost every
error associated with an MD simulation, these bounds are in general either rather weak or
require additional conditions beyond those that can be assumed for typical simulations.
Here, we outline some of the remaining questions raised by the results presented in this
thesis:

1. Can we bound time discretization and sampling error while dropping the integrabil-
ity condition used in Theorems 3.2.2 and 4.2.2? Alternatively, can we provide some
rigorous justification for why MD force fields are integrable or near-integrable? The
justification provided thus far is just a conjecture.

2. Is it possible to exactly fit a force field to the lowest-energy Born-Oppenheimer elec-
tronic state? This question is the driving source for almost all current force field
development research.

3. Following the above, what is the resulting error in the measurement of any observ-
able given a certain error in the force field? Understanding this would help us set
goals on how accurate our force fields needed to be to carry out any given measure-
ment.

4. Does force-field functor theory work in full generality for any force field? Further
empirical testing and analytic results on the Wigner expansion are needed to under-
stand the merits of this approach. If not, is there a better way of computing the force-
field functor without the Wigner expansion? Ideally, we would like a method that
worked at all temperatures and for which mathematical convergence was known.

Answering these questions will help scientists better understand the error in the MD
simulations they run. Such bounds will make biochemists more confident in drug pre-
dictions made via simulation or material scientists more confident in designing materials
with properties predicted via simulation. If we understand the size of errors in observ-
ables predicted by MD simulation, we can be more confident in results predicted by sim-
ulation and thus more likely to use simulations to answer major scientific questions.
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