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Preface

This thesis will give a motivated exposition of Viazovska’s proof that the E8 lattice
packing is the densest sphere packing in dimension 8, as well as an overview of the (very
similar) proof that the Leech lattice is optimal in dimension 24. In chapter 1, we give a
brief history of the sphere packing problem, discuss some of the basic definitions and general
theorems concerning sphere packing, and offer constructions of the E8 and Leech lattices.
We do not, however, delve deeply into the miraculous properties of these lattices. In chapter
2 we give a more or less complete introduction to the theory of modular forms as it will be
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used in Viazovska’s proof. For those already familiar with this material, it is recommended
to begin with chapter 3. Chapter 3 contains a proof of the Cohn-Elkies linear programming
bound, its application to the trivial 1-dimensional sphere packing problem, and describes
some of the numerical results that can be computed from the Cohn-Elkies bound. Chapter 4
gives a lengthy discussion of the motivation for Viazovska’s magic function construction and
then a rigorous proof that it works as needed. This chapter contains the main content of this
thesis. Chapter 5 gives a concise overview of the corresponding magic function construction in
dimension 24. Finally, chapter 6 describes some further questions concerning magic functions,
the Cohn-Elkies bound, sphere packing, Fourier Interpolation and the 8 and 24 dimensional
proofs.

I would like to offer my deepest thanks to my thesis advisor, Professor Noam Elkies,
for his constant assistance to me and detailed commentary, edits and suggestions on the
various drafts of this thesis. I would also like to thank Henry Cohn for generously taking
the time to meet with me and discuss his work on the sphere packing problem; Maryna
Viazovska, whose brilliant resolution of the 8-dimensional sphere packing problem is the
main topic of this thesis (and who kindly talked to me about her work during the 2017
Current Developments in Mathematics forum at Harvard); and Don Zagier, a personal hero
whose chapter in The 1, 2, 3 of Modular Forms has inspired me for some time. Finally, I
would like to thank “The Hicks House Crew”: Michael Fine, Emily Saunders, Chris Rohliček,
and Ethan Kripke, my “Gnoccho”, who was of invaluable assistance to me in resolving the
subtle subtraction problem, 256− 512 = −256.

1. Background and History

1.1. Some History. How does one pack congruent spheres as densely as possible? This
seemingly innocent question – one that anyone who has tried to pack oranges or stack marbles
is already intimately familiar with – turns out to be one of the most tantalizingly difficult
problems in geometry. Spheres, unlike cubes, do not fit together well, and the kinds of
arrangements one can create by trying to pack spheres (and their multidimensional analogues)
together are diverse and interesting. Moreover, the theory of sphere packings has fascinating
connections to other areas of mathematics: quadratic forms, number theory, lattices, finite
groups, and modular forms, to name a few.

The central question in the study of sphere packing is to find the largest proportion of
d-dimensional Euclidean space that can be covered by non-overlapping unit balls. For general
d, the answer remains unknown; in fact, we do not even know whether the maximally dense
configurations are lattice packings or even periodic for most d (indeed, heuristic evidence
suggests that optimal packings will likely not be lattice packings for most d [8].

The case of sphere packing in everyday 3-dimensional space was of great historical
importance. It was conjectured by astronomer and mathematician Johannes Kepler, in his
1611 paper Strena seu de nive sexangula (‘On the Six-Cornered Snowflake’), that the densest
packing of spheres in 3 dimensions is the so-called face-centered-cubic (FCC) lattice, which
covers π/

√
18 or about 74.05% of 3-dimensional space [21]. The background for Kepler’s

interest in sphere packing is itself an interesting historical footnote. Kepler was inspired to
study sphere packings by fellow astronomer Thomas Harriot (1560–1621), who was a friend

2



Modular Magic Aaron Slipper

and assistant of the famous explorer Sir Walter Raleigh (1554–1618), the early New World
colonist whose doomed ‘Roanoke’ expedition has been the subject of much mystery. It was
Raleigh who had set Harriot the (very practical) problem of finding the most efficient way to
stack cannonballs on his ships [36]. One might say that the modern theory of sphere packing
and United States of America share a common ancestor.

Little progress was made on the so-called ‘Kepler conjecture’ until Gauss [16], in 1831,
who proved that Kepler’s packing achieves maximal density among lattice packings of spheres
(that is, Gauss showed that we insist upon the centers of the spheres forming a lattice in R3,
then the FCC is the densest). The question of irregular packings turned out to be of great
difficulty – indeed, over restricted subsets of R3 it is possible to find irregular packings that
achieve density greater than Kepler’s – but all known examples of these failed to extend to
all of R3.

In 1953, László Fejes Tóth (1915-2005), one of the progenitors of discrete geometry
(and the theory of sphere packings specifically), demonstrated that, in principle, one could
reduce the problem of irregular packings in Kepler’s conjecture to verifying a finite (but
exceedingly large) set of computations; Fejes Tóth himself observed that a computer could
in theory verify all the necessary cases, though at the time, the technology was insufficient
to make this method practicable [14].

Thomas Hales, a number theorist then at the University of Michigan, was the first
to implement Fejes Tóth’s program. Hales and his student Samuel Ferguson completed this
computer-assisted proof by 1998, depending upon the computer-assisted resolution of around
100,000 linear programming problems [18]. This proof was as interesting sociologically as
it was mathematically – it was the second significant mathematical result to be resolved
through exhaustive computer-assisted brute force (the first being the famous four-color the-
orem, proved in 1976 by Appel and Haken). It represents one of the first computer-age
proofs: an argument that no human knows in full detail, but which establishes the result
with complete certainty – perhaps even greater certainty than many proofs which are not
computer-assisted, and so liable to human fallibility. Recently, Hales and collaborators pub-
lished on the ArXiv a computer-verification of the proof of the Kepler conjecture [19]. It was
accepted for publication in the journal Forum of Mathematics in 2017.

A parallel – though less protracted – story transpired for d = 2, the problem of packing
congruent circles as densely is possible in R2. Here the hexagonal (honeycomb) circle-packing
is optimal, covering π/

√
12 or about 90.69% of R2. Joseph-Louis Lagrange (1736-1813) played

the analogous role to Gauss in this story, proving that the honeycomb lattice is optimal among
lattice circle packings in R2; the first proof that the hexagonal packing is optimal among all
packings came with Axel Thue (1863-1922) in 1890 [37]. Yet, while this result is often called
“Thue’s theorem,” there is some contention over whether Thue’s proof is fully correct. The
first proof universally acknowledged to be complete was given by Fejes Tóth (1940) [15].

This thesis concerns the remarkable recent results which resolve the sphere packing
problem in dimensions 8 and 24. It was proved as early as 1935 that the E8 lattice gives
the densest possible packing among lattice sphere packings in 8 dimensions [2]. However,
the proof that the Leech lattice is the densest among lattice packing in 24 dimensions came
as late as 2004 [7]. The 8-dimensional problem for general, possibly irregular packings was
solved by Maryna Viazovska in 2016 [38], and her method was quickly re-purposed to solve
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the general sphere packing problem in 24 dimensions [8]. Viazovska’s solution consisted of
finding an optimal function for the so-called “linear programming bound” of Cohn-Elkies,
which was in turn inspired by similar “linear programming bounds” for kissing numbers and
error-correcting codes. We shall give a brief history of these background developments.

A closely related issue to the sphere packing problem, the so-called “kissing number
problem” acted as an early incubator for the methods and ideas employed in resolving the
sphere packing problem in d = 8 and d = 24. The kissing number in dimension n is defined
to be the maximal number of non-overlapping, congruent spheres that can be placed around
a single, central, sphere of the same radius. (The shell of spheres thus “kiss” the sphere in
the middle). In two dimensions, it is fairly clear that one can place six pennies around a
single penny but no more. In 1694, the corresponding question in three dimensions became
the subject of a famous debate between Isaac Newton (1643-1727) and David Gregory (1661-
1708). Newton believed that only twelve spheres could fit, whereas Gregory believed that a
thirteenth could be squeezed in. Newton was ultimately vindicated, though the first rigorous
proof was given in 1953 by Kurt Schütte (1909-1998) and Bartel van der Waerden (1903-
1996) [34]. Notably, the “fit” of the 12 spheres around the single central sphere (unlike in two
dimensions) is very poor – one can, in fact, continuously roll the 12 spheres on the central
sphere without ever lifting the spheres off of the central sphere, and, eventually, swap the
positions of any two spheres.

In the beginning of the 1970’s Phillipe Delsarte made a major breakthrough in the
closely related theory of binary codes, where he applied the theory of linear programming
to establish strong upper bounds for cardinalities of error-correcting codes [11]. Delsarte,
Goethals, and Seidel soon applied this theory to the case of so-called “spherical codes” (which
correspond to finite sets of points on a sphere in some dimension) to give very good upper
bounds on kissing numbers [12]. The technique involves constructing a certain auxiliary
function with specified properties; given such a function, one can find a corresponding bound
on kissing numbers. In the case of dimensions 8, and 24, it was found to be possible force
these upper bounds to actually equal the kissing numbers coming from known lattice packings
(namely E8 in dimension 8; and Λ24, or the Leech lattice, in dimension 24). With this
technique Neil Sloane (1939–) and Andrew Odlyzko (1949–) [30] and, independently, Vladimir
Levenshtein (1935–2017) [22], proved that the kissing numbers in dimension 8 and 24 are 240
and 196560, respectively; with these bounds attained by the first shell of the E8 and the
Leech lattice sphere packings, respectively.

Interestingly, while the Delsarte technique itself was insufficient to solve the kissing
number problem in 4 dimensions, it turned out that the method could be cleverly modified
to resolve this case as well. It was known that one could fit 24 hyperspheres around a single
congruent hypersphere (this is accomplished by the first shell of the D4 lattice packing, which
is also conjectured to be the best sphere packing in dimension 4). However, Delsarte’s method
in four dimensions proved only able to give an upper bound of 25. Oleg Musin found a rather
subtle modification of the Delsarte Method to reduce the bound to 24, thus solving the 4-
dimensional kissing number problem [28; 27]. Interestingly, Musin then used this technique
to offer an alternative proof that the 3-dimensional kissing number is 12 [29].

In 2003 Henry Cohn and Noam Elkies introduced the technique of linear programming
bounds for sphere packings in analogy with the linear programming bounds used in the theory
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of error-correcting codes and kissing numbers [6]. Like the Delsarte bound, the Cohn-Elkies
bound depends on finding some auxiliary function subject to certain constraints. Efforts to
optimize the this function revealed that, like with kissing numbers, the Cohn-Elkies bound
seemed to actually give the optimal packing density in dimensions 8 and 24. That is, the
upper bounds coming from well-chosen functions f could be made to be extremely close to the
densities of the lattice packings E8 and Λ24. Cohn and Elkies conjectured that there exist
functions which optimize the Cohn-Elkies bounds in these dimensions – so-called “magic
functions.” These magic functions could be numerically approximated (and indeed, Cohn
and Miller made several important conjectures about the nature of these functions from the
obtainable numerical data [9]), but whether or not the methods employed to compute them
would actually converge,1 let alone an explicit construction of such an optimal function,
remained unknown for the next decade or so.

Then, on March 14, 2016 (a Pi Day revelation), Maryna Viazovska published to the
ArXiv a paper giving a construction of the magic function in dimension 8, proving at last that
the E8 lattice gives the densest sphere packing in 8 dimensions [38]. Within a fortnight, Cohn,
Kumar, Miller, Radchenko, and Viazovska published a similar proof, constructing the magic
function for dimension 24, showing that the Leech lattice gives the densest sphere packing
in 24 dimensions [8]. (In both of these cases it is conjectured that these magic functions are
unique.) Fascinatingly, the magic functions constructed by these arguments turn out to be
Laplace transforms of modular (or, more precisely, quasimodular) forms. Viazovska’s work
establishes yet another, quite surprising, connection between sphere packings and the theory
of modular forms.

These results are also notable because, unlike the proof of the Kepler conjecture, they
do not require any onerous computer verification. While computers can facilitate some of the
rote arithmetic involved in the arguments, they are not strictly speaking necessary; moreover,
the proofs have none of the attrition that so characterized to proof of the optimal packing
for d = 3.

1.2. Generalities of Sphere Packings. We consider d-dimensional Euclidean space, Rd,
equipped with the standard inner product. We let Vol(R) denote the volume of a region
R ⊂ Rd (R measurable). Finally, we let Bd(x, r) = {y ∈ Rd : ‖x − y‖ < r} represent the
open ball with center x and radius r. Recall that:

Vol(Bd(0, r)) =
πd/2

Γ
(
d
2

+ 1
)rd.

Likewise, we define the open cube Cd(x, r) := {y = (y1, . . . , yd) ∈ Rd : |xi−y− i| < r}. This
has volume (2r)d.

We now take X ⊂ Rd to be a discrete set of points such that for all x and y in X,
‖x − y‖ ≥ 2. These will be the centers of our spheres; they are chosen so that Bd(x, 1) is
disjoint from Bd(y, 1) for all x 6= y, x, y ∈ X. We take the union:

1In fact, the problem of the convergence of the approximations given by Miller and Cohn remains unknown.
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R =
⋃
x∈X

Bd(x, 1)

This region R is what we shall define to be a sphere packing. If X happens to be a lattice,
we refer to the packing as a lattice packing ; if X is the the union of several translates of a
single lattice, we will say it is periodic. Otherwise, we say the packing is irregular.

We wish to find the densest packing of spheres in d-dimensional space; as we are
referring to all of (infinite) Rd, our packings (if they should have a nonzero density) should
contain an infinite number of balls and our notion of density will implicitly depend on some
sort of limit. A natural way to define this limit is to consider the proportion of space taken
up by our sphere packing within some (large) cube2 and let the side-length of the cube tend
to infinity. Thus we let:

∆R(r) :=
Vol(R ∩ Cd(0, r))

Vol(Cd(0, r))
.

where Cd(x, r) = {(y1,d ) ∈ Rd : |yi − xi| ≤ r} is the cube of side-length 2r centered at x
(note that Vol(Cd(0, r) = (2r)d).

Of course, it is not hard to construct examples3 for which ∆R(r) fails to stabilize as
r →∞; so we define the density4 of a lattice packing as the limit superior of ∆R(r):

∆R := lim sup
r→∞

∆R(r).

Likewise, we define the center density of R as the dimensionless quantity:

NR =
∆R

Vol(Bd(0, 1)
=

∆RΓ(d
2

+ 1)

rdπd/2
.

This represents the “number of sphere centers per unit volume.”
The number of interest to sphere packing theory is the limit superior of ∆R over all

sphere packings R:

∆d := sup
R

∆R

It is natural to ask whether, given such a ∆d, there exists an actual sphere packing that
achieves this supremal density. The answer is yes, as was shown by H. Groemer [17]. While
we will not require this result, as we will only consider extremal cases coming from sphere
packings that are already known, but we shall nevertheless offer a proof.

2One can of, course define this by taking a large sphere whose radius tends to infinity. This is how density is
defined in [38]. We use cubes, as it is easier to prove, using this definition, that an arbitrary sphere packing
can be approximated arbitrarily well by a periodic packing.
3Consider, for example, a lattice packing (Zd, say, for simplicity), in which we remove all spheres whose
centers have a magnitude between (2k)! and (2k + 1)! for all k ∈ Z.
4Cohn [6] calls this the upper density. We are following the terminology of Viazovska [38].
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Let R1, R2, . . . be sphere packings whose densities approach a constant ∆d, the supre-
mum of densities over all packings. We must find a single sphere packing whose density
actually equals ∆d. To do so, we will use the “turducken method,” enclosing each some finite
portion of the packing Ri in a very-much-larger shell of spheres from Ri+1, so that, in the
limit, the density of the the packing equal ∆d.

Say that the densities of these packings are D1, D2, . . . where Di → ∆d. For each
packing Ri, we can find, for any εi > 0, a sequence of numbers rij where rij →∞ as j →∞
such that ∣∣∣∣Vol(Ri ∩ Cd(0, rij))

Vol(Cd(0, rij))
−Di

∣∣∣∣ < εi

for all j. (Moreover, Di is by definition the supremum of all numbers with this property.)
Now, for a packing R, we can remove all spheres which intersect the interior of some

finite cube C(0, k) without changing the packing density. For say we removed all spheres in
R that intersect the interior of C(0, k). The union of all such spheres is completely contained
in C(0, k + 2), which has volume (2(k + 2))d: if we call the total volume of the spheres we
are removing K, we have K < (2(k + 2))d. In fact, we can “refill” the newly emptied chasm
in C(0, d) with spheres from any other packing while also not affecting the packing density;
if K ′ is the volume of the spheres we have added in C(0, d) (again, K ′ < (2(k + 2))d) then
the new density of this sphere packing is given by:

lim sup
r→∞

Vol(R ∩ Cd(0, r))−K +K ′

Vol(Cd(0, r))
= lim sup

r→∞

Vol(R ∩ Cd(0, r))
Vol(Cd(0, r))

+
K ′ −K

(2r)d

= lim sup
r→∞

Vol(R ∩ Cd(0, r))
Vol(Cd(0, r))

= ∆R.

Now, let R∗ be a packing that agrees with R for all spheres that do not intersect C(0, ki), ki
a number depending on i for each i. Let D be the density of R. Then we see that:∣∣∣∣Vol(R∗i ∩ Cd(0, r))

Vol(Cd(0, r))
− Vol(Ri ∩ Cd(0, r))

Vol(Cd(0, r))

∣∣∣∣ ≤ (2(ki + 2))d

(2r)d
.

Given some εi > 0, we can find an N so large that for all r > N , the LHS of this is less
than ε/2. Likewise, by the definition of the limit superior, we can find a sequence of radii
{rj} so that rj →∞ as j →∞, and∣∣∣∣Vol(R ∩ Cd(0, rj))

Vol(Cd(0, rj))
−D

∣∣∣∣ < ε

2

for all j. Restricting to those rj > N , we see that there exists a sequence such that:
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∣∣∣∣Vol(R∗ ∩ Cd(0, rj))
Vol(Cd(0, rj))

−D
∣∣∣∣ ≤ ∣∣∣∣Vol(R∗ ∩ Cd(0, rj))

Vol(Cd(0, rj))
− Vol(R ∩ Cd(0, rj))

Vol(Cd(0, rj))

∣∣∣∣
+

∣∣∣∣Vol(Ri ∩ Cd(0, rj))
Vol(Cd(0, rj))

−D
∣∣∣∣

≤ ε,

In other words, for a given ε > 0 we can find a sequence of rj, so that rj → ∞ as j → ∞,
such that ∣∣∣∣Vol(R∗ ∩ Cd(0, rj))

Vol(Cd(0, rj))
−D

∣∣∣∣ < ε

for all j and for all sphere packings R∗ which agree with one another outside of C(0, k). (The
interesting content here is that we can pick the same sequence for all such R∗.)

Applying this to the sequence of sphere packings Ri of density Di → ∆d, we observe
that we can now say, given an arbitrary sequence of numbers ki > 0, and εi > 0 as before,
that there exists a series of rij, depending on ki and εi, with rij → ∞ as j → ∞ for each i,
such that, for all j, ∣∣∣∣Vol(R∗i ∩ Cd(0, rij))

Vol(Cd(0, rij))
−Di

∣∣∣∣ < εi

for any sphere packing R∗i that agrees with Ri for all spheres that do not intersect the interior
of Cd(0, ki).

We will now use this fact to construct a single sphere packing R of density ∆d. First,
we let εi = 1/i. Then, we define R′1 = R1. Now, let k1 = 0. Note that this and the fact that
ε1 = 1 gives rise to a sequence {r1j} with the above-defined properties.

Now, inductively assume that we have defined R′i and ki for a given i (we have already
specified εi = 1/i for all i). Then there exists a sequence ri,j for all j such that, as discussed
above, rij →∞ as j →∞, and∣∣∣∣Vol(R∗i ∩ Cd(0, rij))

Vol(Cd(0, rij))
−Di

∣∣∣∣ < εi

for all j. Because rij → ∞ as j → ∞, we can pick an rij arbitrarily large; say, so that
rij > max(i, ki). Let us call such a number r(i). We define ki+1 = r(i). Then we can define
R′i+1 to equal R′i for all spheres whose interiors lie inside Cd(0, ki+1) and to equal Ri for all
spheres whose interiors lie in the exterior of Cd(0, ki+1).

This produces a series of sphere packings R′i that agree with one another for those
spheres whose interiors are contained with in the cube Cd(0, kn) for all i > n. Moreover, we
have rigged kn to increase and go to infinity. Thus we can speak of the stable limit of this
sphere packing; let us call it R. Note that, by construction:
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∣∣∣∣Vol(R ∩ Cd(0, ki))
Vol(Cd(0, ki))

−Di

∣∣∣∣ < 1/i.

Moreover, we know, that Di → ∆d as i→∞, so that

Vol(R ∩ Cd(0, ki))
Vol(Cd(0, ki))

→ ∆d

as ki → ∞. Thus, we know, by the definition of limit superior, that the packing density of
∆R is at least ∆d; however, ∆d has been defined to be the supremal density among all sphere
packings, so we have ∆R = ∆.

Note that R is very much irregular (even if the Ri are regular); it is unknown if there
exists a supremal sphere packing which is periodic. However, the following is true:

Lemma 1.2.1 Any sphere packing can be arbitrarily well approximated by periodic
sphere packings.

This will be the basic sphere packing fact used by the Cohn-Elkies linear programming
bound, so we will give a complete proof presently.

Proof. Say that we have a sphere packing R, of density ∆R. Given an ε > 0, we will
find a periodic packing R′ so that |∆′R −∆R| < ε.

Given such an ε, we can find arbitrarily large radii r such that

(1)

∣∣∣∣Vol(R ∩ Cd(0, r))
Vol(Cd(0, r))

−∆R

∣∣∣∣ < ε/2.

Note that the set of points contained by those spheres of R that intersect the boundary of
the cube Cd(0, r) is properly contained by the cubic shell of distance two on either side of
each face; this volume is in turn less than (2d)(2r)d1 · 4 – coming from 2d faces, each of area
(2r)d−1, with a possible bleeding of 2 units in either direction.

We now choose r so big that (1) is satisfied and so that 4d/r = ((2d)(2r)d−1·4)/((2r)d) <
ε/2. We can do so as the collection of r satisfying (1) is unbounded. Now, remove from R all
cubes whose interiors intersect the boundary of cube Cd(0, r). Call the collection of remaining
spheres R′. We have:∣∣∣∣Vol(R′ ∩ Cd(0, r))

Vol(Cd(0, r))
− Vol(R ∩ Cd(0, r))

Vol(Cd(0, r))

∣∣∣∣ ≤ (2d)(2r)d−1 · 4
(2r)d

< ε/2.

Thus, by the triangle inequality, we have:

(2)

∣∣∣∣Vol(R′ ∩ Cd(0, r))
Vol(Cd(0, r))

−∆R

∣∣∣∣ < ε.

Now, we proceed to translate the collection of spheres S by the cubic lattice (2r) ·Zn ⊂
Rn. By construction this lattice is periodic, and has density exactly equal to
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Vol(R′ ∩ Cd(0, r))
Vol(Cd(0, r))

.

Thus R′ is a periodic packing, and by (2), has a density within ε of ∆R.

1.3. E8 and the Leech Lattice. As we shall see, the optimal sphere packings in dimension
8 and 24 are two famous lattice packings: E8 and the Leech lattice, Λ24. For various construc-
tions, as well as a detailed discussion, of these extraordinary lattices and their remarkable
properties, we refer the reader to the compendious Sphere Packings, Lattices and Groups of
Conway and Sloane (often referred to as “SPLAG”) [10].

Rather fascinatingly, Viazovska’s argument and the corresponding argument in dimen-
sion 24 does not make much use of the exceptional properties of these lattices. As a result,
we have not decided to give an exposition of them, and refer the reader to the above reference
for more details. In fact, all we will need are Theorems 1.3.1 and 1.3.2, whose proofs are also
to be found in [10]. For a reader not willing to take these results on faith, the rest of this
document will work towards proving that, for a lattice satisfying the hypotheses of Theorems
1.3.1. and 1.3.2., the associated sphere packing is the densest possible.

We introduce the following terminology. A lattice is a free, rank n subgroup of Rn with
the usual inner product. A lattice is said to be integral is 〈x, y〉 ∈ Z for all x and y in Λ. A
lattice is said to be even if the square magnitudes of the lattice vectors are all even integers.
For every lattice Λ, there exists a dual lattice, Λ∗, defined as the set of all vectors x such that
for all y ∈ Λ, 〈x, y〉 ∈ Z. If Λ∗ = Λ, then Λ is said to be self-dual. Given a basis e1, . . . , en
for a lattice, we can take construct an n×n matrix whose (i, j)th component is 〈ei, ej〉. This
is called a Gram matrix, and the determinant of the Gram matrix is called the determinant
of the lattice. If the the lattice has determinant is ±1, it is said to unimodular. An integral
unimodular lattice is self-dual. Two lattices are isomorphic if there is a bjection between the
two lattice vectors coming from an orthogonal linear map Rn → Rn.

Theorem 1.3.1. There exists a lattice in R8 that is even and unimodular. This lattice
is unique up to isomorphism.

The unique lattice described by this theorem is E8. Explicitly, we can construct E8 as:{
x = (x1, . . . , x8) ∈ Z8 ∪

(
Z +

1

2

)8

:
8∑
i=1

xi ≡ 0 mod 2

}

In other words we find the subset of the integral lattice Z8 and the translated “affine” lattice
constructed by adding to every lattice element in Z8 the vector (1/2, . . . , 1/2). Then we
take the subset of those vectors such that the sum of the components of each vector is an
even integer. This gives one construction of E8, and from this construction, one can easily
compute that E8 is even and unimodular. The uniqueness of a lattice with such properties,
however, is more subtle; several proofs exist (see [10; 13; 26]).

Theorem 1.3.2. In R24, there exists a unique even, unimodular lattice, none of whose
vectors have magnitude

√
2.

10
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For a proof of this, see chapter 12 of [10] (the result is due to Conway). This lattice
is called the Leech lattice. There are myriad constructions for this lattice; over 20 are
listed in [10]. We shall give the following construction, which points out a rather fascinating
connection between the Leech lattice and the Diophantine equation 12 . . .+ k2 = N2, whose
only solution after k = 1 and N = 1 is k = 24 and N = 70.5

We define on R26 the Lorentzian inner product: if x = (x1 . . . x26) ∈ R26 and y =
(y1 . . . y26) ∈ R26, we let 〈x, y〉L := x1y1 + . . . + x25y25 − x26y26. We define the lattice6 II25,1

as: {
x = (x1, . . . , x26) ∈ Z26 ∪

(
Z +

1

2

)26

:
26∑
i=1

xi ≡ 0 mod 2

}

Now, within II25,1 there exists a special vector:

w := (1, 2, . . . , 24, 70)

which has magnitude 0 and integer components. We see, therefore, that w ∈ w⊥. We take
w⊥/w, giving a 24-dimensional lattice; this is the esteemed Leech lattice Λ24.

2. The Elementary Theory of Modular Forms

We will now give an introduction to the theory of modular forms. This exposition follows
[41] very closely – we follow the structure of Zagier’s exposition, choosing to omit those parts
not relevant to our later work on sphere packing.

2.1. First definitions. Let H denote the upper half plane; that is:

H = {z = a+ bi ∈ C : b > 0}.

The group SL(2,R), of 2×2 determinant 1 matrices with real entries, acts on H by fractional
linear transformations (also called Möbius trnasformations):(

a b
c d

)
(z) :=

az + b

cz + d

for z ∈ H.

5This is often posed as the so-called “cannonball problem”: one has pyramid of cannonballs, given by one
cannonball on top, a square of four cannonballs underneath, and so-on until one has a k × k square of
cannonballs at the bottom. How many cannonballs should one have, and what is the size of the bottom row,
so that the total number of cannonballs is a perfect square? We thought it fitting to mention this presentation
of the problem given its sphere packing resonances. The first mathematician to conjecture that these are the
only solutions to this particular Diophantine equation was Eduard Lucas [24]; it was proved by G.N. Watson
in 1918 [39]. More recent, elementary proofs have been offered [1; 25].
6Here we are appealing a slightly more general definition of a lattice. Recall that we defined a lattice as a
free Abelian group of rank n embedded into Rn endowed with the standard inner product. Here we define a
lattice as a a free Abelian group of rank 26 embedded into R26 endowed with the Lorentzian inner product.
This inner product is not merely non-standard; it is not positive definite.

11
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It is a straightforward computation to verify that composing fractional linear trans-
formations is equivalent to multiplying the corresponding matrices; a more revealing reason
for this behavior is given by viewing Möbius transformations as linear functions on complex
projective space: P1(C) = P(C2). A matrix acts linearly C2 and so projects to an aciton on
P1: in homogeneous coordinates on P1, a linear function sends [x, y] 7→ [ax + by, cx + dy].
In inhomogeneous coordinates, [x, 1], we have [x, 1] 7→

[
ax+b
cx+d

, 1
]
, which shows how Möbius

transformations act like 2× 2 matrices (and so must compose like 2× 2 matrices).
To see that Möbius transformations actually map H to H, we let z = u + vi; u, v ∈ R

and v > 0. We let Imz denote the imaginary part of z; in paticular, Im(z) = v. We compute:

Im

(
az + b

cz + d

)
= Im

(
au+ avi+ b

cu+ cvi+ d

)
= Im

(
au+ b+ avi

cu+ d+ cvi
· cu+ d− cvi
cu+ d− cvi

)
=

(ad− bc)v
|cz + d|2

=
v

|cz + d|2
(3)

In particular, the imaginary part of az+b
cz+d

has the same same sign as that of z, proving that
γ : H→ H for all γ ∈ SL(2,R).

Note that the matrices M and −M represent the same fractional linear transforma-
tion; this suggests that most natural group to to consider is not SL(2,R) but PSL(2,R) :=
SL(2,R)/{I,±I}. (The “modular group,” PSL(2,Z), has a trivial stabilizer in acting on H.)

Modular forms are holomorphic functions on H which transform in a prescribed manner
under the action of a discrete subgroup of SL(2,R). For our purposes, we will consider
only the class of “congruence subgroups” of SL(2,Z) := Γ(1). The most basic congruence
subgroups of Γ(1) are often written Γ(N), Γ1(N), and Γ0(N). They are defined as follows:

Γ(N) =

{(
a b
c d

)
∈ SL(2,Z),

(
a b
c d

)
≡
(

1 0
0 1

)
mod N

}

Γ1(N) =

{(
a b
c d

)
∈ SL(2,Z),

(
a b
c d

)
≡
(

1 ∗
0 1

)
mod N

}

Γ0(N) =

{(
a b
c d

)
∈ SL(2,Z),

(
a b
c d

)
≡
(
∗ ∗
0 ∗

)
mod N

}

where ∗ represents an arbitrary integer. A subgroup Γ ⊆ SL(2,Z) is called a congruence
subgroup if it contains Γ(N) for some N ; the minimal choice of N such that Γ ⊇ Γ(N) is
called the level of the subgroup.

12



Modular Magic Aaron Slipper

Given any Γ, a discrete subgroup of SL(2,Z), 7 we define a modular form of weight k
on Γ to be a function, holomorphic on H, satisfying:

(4) f

(
az + b

cz + d

)
= (cz + d)kf(z)

for all

(
a b
c d

)
∈ Γ, and of “subexponential” growth at infinity; that is:

(5) f(x+ iy) = O
(
eCy
)

as y →∞ for all C > 0

and

(6) f(x+ iy) = O
(
eC/y

)
as y → 0 for all C > 0.

(These analytical conditions will be explained shortly.)
An important coherence condition implied by the transformation property must be

observed. Namely, we must have

f((γγ′)(z)) = f(γ(γ′(z))

for all γ, γ′ ∈ Γ. Letting

γ =

(
a b
c d

)
and

γ′ =

(
a′ b′

c′ d′

)
,

we see, by applying transformation formula (4) to the left hand and right-hand side, that

((ca′ + dc′)z + (cb′ + dd′))
k
f(z) =

(
c(c′z + d′) + d)k(c′z + d′

)k
f(z).

A quick computation reveals that this identity is satisfied identically – i.e., it “comes for
free.” It expresses an important property of the so-called “factor of automorphy” (cz + d)k;
namely, if we let F (γ, z) = (cz + d)k, then

(7) F (γγ′, z) = F (γ, γ′z)F (γ′, z).

This is called the cocycle condition, as a function satisfying (7) called a 1-cocyle in group
cohomology.

7This definition applies to congruence as well as non-congruence subgroups, although we we will only consider
congruence subgroups here.
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The set of modular forms of a specified weight on Γ constitutes a complex vector space,
which we denote Mk(Γ). The space⊕

k

Mk(Γ) := M∗(Γ)

forms a graded algebra over C under the usual product of functions: the product of a modular
form of weight k and a modular form of weight l is a modular form of weight k + l. As we
shall prove, each of the spaces Mk(Γ) is finite-dimensional, and the algebra M∗(Γ) will turn
out to be finitely generated over C.

Let us consider the matrices of the form(
1 k
0 1

)
, k ∈ Z

in some Γ. These correspond to the transformations of the form z 7→ z + k; i.e., horizontal
shifts. The transformation formula (4) gives

(8) f(z + k) = f(z).

The minimal k such that (8) holds for all z is called the period of f . The existence of
such a period implies that we can develop f in a Fourier series. Letting q = e2πiz, we can
write:

f(z) =
∑
n∈Z

anq
n/k

The growth conditions (5) and (6) imply that there are no negative-index Fourier
coefficients. For let A(z) =

∑
n anz

n; i.e., A
(
e2πiz/k

)
= f(z). By Cauchy’s integral formula:

an =
1

2πi

∮
A(z)

zn+1
dz.

Considering this contour integral about a circle of radius ε with 0 < ε < 1, we get:

|an| =
∣∣∣∣ 1

2πi

∮
A (εe2πit)

(εe2πit)n+1 · εe
2πit(2πi)dt

∣∣∣∣
≤ 1

εn

∫ 1

0

A
(
e2πit+log(ε)

)
dt

=
1

εn

∫ 1

0

A
(
e2πi(t−[i log(ε))/2π])

)
dt

=
1

εn

∫ 1

0

f

(
k

[
t− i log(ε)

2π

])
dt.

14
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Noting that 0 < ε < 1, we see that log(ε) < 0, so that as ε→ 0, the imaginary part of
f ’s input tends to +∞. Thus we can use our growth condition, and get the bound:

|an| ≤
1

εn
e−K log(ε)

= ε−(n+K)

for all K > 0. If n ≤ −1, then we can let K < 1, and, as ε → 0, the bound on the RHS
tends to 0 as well. Thus, for n < 0, our Fourier coefficient an vanishes of necessity.

As discussed in Zagier [41], much of the great utility of modular forms stems from this
Fourier expansion in combination with the finite-dimensionality of Mk(Γ) for each k. Indeed
– and this is one of the most tantalizing facts in mathematics – the Fourier coefficients, an,
of modular forms tend to be of profound interest in other areas of mathematics; given this
finite dimensionality, we can thus often find unexpected linear combinations among these
sequences. Moreover, to prove that a given such relation holds in general, we need only check
that it holds for a finite number of terms.

2.2. The Fundamental Domain of the Modular Group. If we know how a function f
transforms under certain symmetries, it often suffices to define f in some restricted domain
and then to use the symmetry to define it everywhere else. To perform this process, we must
make sure that the translates of the restricted domain, under the action of the group, do
not overlap (or overlap as little as possible). This way we can choose our original f on the
restricted domain as freely as possible.

Let us examine an illustrative example. Say we want to construct an even function;
that is, f : R → R such that f(−x) = f(x). We need only define f on all x > 0; the rest
is then specified by the symmetry constraints. If we insist that f be an odd function – that
is, f(−x) = −f(x) – then the domain is the same, although now we must also insist that
f(0) = 0. As a final example, consider the case of periodic functions; say f : R → R such
that f(x+ 1) = f(x). In this case we need only define f on the unit interval [0, 1]; although,
like with the case of odd functions, we must be careful that the boundaries agree: i.e., that
f(0) = f(1).

We are getting at the idea of a “fundamental domain.” If a group Γ acts on a topological
space X via continuous transformations, a fundamental domain for Γ is an open set U such
that no two distinct points of U are in the same Γ-orbit, while every point of X lies in the
orbit of some point in the closure, U .

Theorem. A fundamental domain of Γ(1) = SL(2,Z) (or equivalently, the modular group
PSL(2,Z)), acting on H by fractional linear transformations, is given by:8

F =

{
z ∈ H : |z| > 1, |Re(z)| < 1

2

}
.

8This shape is a hyperbolic triangle: the boundaries o F are geodesics of H under the Poincare Metric.
PSL(2,R) acts on H via isometries, so geodesics are mapped to geodesics, and thus the tiling of H by Γ(1)-
translates of F defines a tessellation of H via hyperbolic triangles.
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(Here Re(z) refers to the real part of z.)
This fundamental domain is depicted below, in grey, along with the so-called upper

half plane tiling of H by the Γ(1)-translates of F (the blue lines are the boundaries, and the
vertical black line is the imaginary axis).

Figure 1. The Upper Half Plane tiling.

Proof. Let z ∈ H. Consider the complex lattice {mz + n : m,n ∈ Z}. There must exist a
nonzero value in this lattice of minimal complex magnitude, as the lattice is a discrete subset
of C and 0 lies in the lattice. Let us call element cz + d. If c and d shared a common factor
k > 1, we could divide it out, and get a new lattice element (c/k)z+ (d/k) of strictly smaller
magnitude. Thus c and d are relatively prime; hence, by Bezout’s lemma, there exist integers
a and b such that ad− bc = 1. Equivalently, we can find a and b such that

α :=

(
a b
c d

)
∈ Γ(1).

Recalling (3), we see that Im (α(z)) is as large as possible for all Im (γ(z)), γ ∈ Γ. We
now repeatedly apply

(9) T :=

(
1 1
0 1

)
to shift α(z) by unit increments until z∗ = T n(α(z)) satisfies |Re(z∗)| ≤ 1

2
.

Now Im(z∗) = Im(α(z)), as we have only translated α(z) by (real) unit increments.
Thus, Im(z∗) is also as large as possible. Thus |z∗| ≥ 1 else we could apply

(10) S :=

(
0 −1
1 0

)
16
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(which corresponds to the transformation z 7→ −1
z
) and get Im(Sz∗) = Im(z∗)

|z∗|2 > Im(z∗),

contradicting maximality. Thus we see that z∗ = T n(α(z)) is in the Γ(1)-orbit of z, and
satisfies |Im(z∗)| ≤ 1

2
, and |z∗| > 1. In other words, z∗ ∈ F .

We next check that no two points within F are mapped to one another by an element
of Γ(1). Say to the contrary that z1 and z2 are both in the same Γ-orbit; that is, z2 = γ(z1),
where γ 6= {I,−I}. Then γ 6= T n, as |Re(z1)| and |Re(z2)| are both strictly less than 1/2.

Thus γ =

(
a b
c d

)
, with c 6= 0. (Observe that if c = 0, the integers along the main diagonal

must both be +1 or −1, as det(γ) = 1. We may assume that both are +1 as γ ∼ −γ in

PSL(2,Z)). Now, observe that Im(zi) >
√

3
2

. We have:

√
3

2
< Im(z2) = Im(γz1) =

Im(z1)

|cz1 + d|2

We can give a lower bound to the denominator of this last term by examining only the
imaginary-part component:

Im(z1)

|cz1 + d|2
≤ Im(z1)

c2Im(z1)2
=

1

c2Im(z1)
<

2√
3c2

.

Together, these imply that
√

3
2
< 2√

3c2
, which means that c = ±1. We can assume,

without loss of generality, that Im(z1) ≤ Im(z2) (otherwise, reverse the roles of z1 and z2 and
use γ−1 instead of γ). If c = ±1, then:

Im(z2) = Im(γz1) =
Im(z1)

|±z1 + d|2
≤ Im(z1)

|z1|2
< Im(z1)

as |±z1 + d| ≥ |z1| > 1 (the first inequality following from |Re(z)| < 1
2
). This is a contradic-

tion, and the theorem follows.
�

An immediate consequence of this theorem is that PSL(2,Z) is generated by the above-
defined matrices S and T .9 For, if we examine the above image of the upper-half-plane tiling,
we will see that the neighboring hyperbolic triangles are TF , T−1F (to the left and right,
respectively), and SF (below). Given some translate γF , we can transform it to one of its
three neighbors via applying γTγ−1, γT−1γ−1, or γSγ−1. In particular, we can apply the
transformation S and T repeatedly to F to bring F to its neighbors, its neighbors’ neighbors,
etc. and so eventually (arguing by induction) to any γF .

Thus both γ and some word in S and T bring F to γF . We showed above that
no two points in F lie in the same PSL(2,Z)-orbit, so, clearly, only the trivial element of
PSL(2,Z) stabilizes the whole tile F . Then, given any other fractional linear transformation
γ′ ∈ PSL(2,Z) such that γ′ : F → γF , we see that γ−1γ′ : F → F , which shows that

9We are being somewhat glib here; elements of PSL(2,Z) are not matrices but pairs of matrices {M,−M}.
Of course, we mean that the pairs of matrices {T,−T} and {S,−S} generate PSL(2,Z). We will often abuse
terminology in this way when our meaning is clear.
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γ−1γ′ = e, or γ = γ′. Thus we can conclude that γ equals the word in S and T , showing that
S and T generate the full modular group.10

Thus, to check that the transformation property (2) is satisfied for a function f which
we wish to show is modular on Γ(1), the full modular group, we need only show

f(z + 1) = f(z),(11)

f(−1/z) = zkf(z),(12)

which together will imply (4) for all transformations in PSL(2,Z).11

2.3. The Valence Formula and Finite Dimensionality of Mk(Γ(1)). We now prove the
finite-dimensionality of Mk(Γ) for Γ the full modular group. We will do so by first proving
an elegant property concerning the integral of the logarithmic derivative of a modular form
of weight k along the boundary of our fundamental region F , sometimes called the valence
formula. This will supply an upper bound for the dimension of Mk(Γ(1)).

We first will deal quite generally with a discrete subgroup Γ of SL(2,R). We will study
the geometry of H/Γ.

If f(z) = 0 for some z ∈ H, then f ((az + b)/(cz + d)) = (cz + d)kf(z) also vanishes;
moreover, it vanishes to the same order. Thus we can associate to each point P ∈ H/Γ a
well-defined number, which we will call the “order” of f at P , given by the order of vanishing
of f at any points in H which cover P .

Some points of P ∈ H/Γ will be “singular” – that is, we can lift P to some P̃ ∈ H
such that P̃ will be stabilized by a nontrivial subgroup of Γ. By the orbit-stabilizer theorem,

the subgroups of Γ which stabilize any choice of lift P̃ will be isomorphic as groups (in
fact, conjugate as subgroups of Γ). We let nP denote the order of this stabilizer, which is

independent of choice of lift P̃ . In fact, the stabilizer of any point in H under the action of
Γ will be a cyclic group of order nP : the SL(2,R)-stabilizer of a point in H is simply the
group S1 × {I,−I}, a union of two disjoint circles. The intersection of this subgroup with a
discrete group Γ ⊂ SL(2,R)) will necessarily be cyclic, and we have already defined its order
to be nP .

From a Riemann-surface point of view, a point P whose preimage in H has a cyclic-
group stabilizer of order nP > 1 will correspond to a point of H/Γ which cannot be coordi-

natized by lifting some neighborhood U ⊂ H/Γ of P ∈ H/Γ to a neighborhood Ũ ⊂ H of

some P̃ ∈ H. (At these points, the projection π : H→ H/Γ fails to be a covering map.)

For say π(P̃ ) = P , and that P̃ ∈ H is a point with a nontrivial Γ-stabilizer. Let Ũ ⊂ H
be any neighborhood of P̃ . Now, say γ ∈ StabΓ(P̃ ), with γ 6= Id. The transformation γ

acts continuously on H, whence γ−1(Ũ) is open in H. Moreover, as γ(P̃ ) = P̃ , we have P̃ ∈
γ−1(Ũ). Thus γ−1(Ũ)∩ Ũ is open and nonempty. Hence there exists a point x ∈ γ−1(Ũ)∩ Ũ

10Expressing a general element γ =

(
a b
c d

)
as a product of the elements S and T is closely related to the

expression of a/c as a continued fraction (See [3]).
11This might not be immediately apparent. In fact it follows from the cocycle condition, (7).
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such that x 6= P , and we can assume that γ(x) 6= x. (Indeed, if this were impossible, then

for all x in the nonempty open set γ−1(Ũ) ∩ Ũ , γ(x) = x. But γ is holomorphic, hence if
γ(x) = x on some open neighborhood then we would have γ(x) = x for all x ∈ H; yet we

have assumed already γ 6= Id.) But then x 6= γ(x) yet both are in Ũ and in the same Γ-orbit.

Thus π(γ(x)) = π(x), and so π cannot map Ũ bijectively onto its image U := π(Ũ).
Interestingly, however, it will still be possible to attribute a Riemann surface structure

to H/Γ. Indeed, around some singular point P , we must first lift to a neighborhood Ũ ⊂ H
(as discussed above, π : Ũ → U will not be a bijection), and then post-compose by the map

(z − P̃ )nP . This (after possibly restricting U) gives a complex coordinate patch in bijection
with U . In fact this procedure defines a coordinate chart for all P ∈ H/Γ (letting nP = 1
trivially for all non-singular points P ∈ H/Γ), and it can be easily verified that the “transition
maps” between these charts are holomorphic. This gives H/Γ the structure of a Riemann
surface.

Let us now determine the singular points of the quotient of the action of PSL(2,Z), the
full modular group, on H. Any point in the interior of the fundamental domain F gets mapped
to the interior of another tile for each γ ∈ Γ; this tile-to-group-element correspondence is a
bijection by the definition of a fundamental domain. Thus any singular points of H/Γ must
lift to a point on the boundary of F .

By definition, if a transformation γ ∈ Γ(1) stabilizes a point, then γ(z) = z for some
z ∈ H, and so z ∈ F ∩ γF . In particular, the only γ which can might have a fixed point is
the (finite) collection of γ such that F ∩ γF 6= ∅.

Explicitly, these γ are I, T−1, T−1S, STS, ST , S, ST−1, ST−1S, TS, and T , where
T : z 7→ z + 1 and S : z 7→ −1/z as in (9) and (10). The only functions here with fixed

points are Id, which fixes everything; S, which fixes i; T−1S and ST , which fix ω = −1+
√
−3

2
;

and ST−1 and TS, which fix ω + 1 = 1+
√
−3

2
. We see that ω and ω + 1 are Γ-equivalent (the

element T maps one to the other), so they correspond to the the same point in H/Γ, which
we shall rather abusively call ω. We see that nω = 3 in this case, as can be seen by lifting
to either to ω or to 1 + ω ∈ H – these have stabilizers {Id, T−1S, ST} and {Id, T−1S, ST},
respectively. Likewise, i is stabilized by the cyclic group of order 2, given by {Id, S}. Using
the same notational abuse, we say that ni = 2. These are the only two singular points of
H/Γ – often called the “elliptic fixed points.”

We now compactify H/Γ by adding a point at infinity – a so-called “cusp.” This cor-
responds to a single point, which we can think of as the limit of x + iy as y → ∞ in F
(independent of x). Observe that the set of points in F with imaginary part larger than
some constant Y ≥ 1 corresponds to the values of q = e2πiz whose magnitude satisfies
0 < q < e−2πY . We thus coordinatize ∞ by q = 0, where we take q as a local coordinate for
H/Γ in the following sense: if U is some open set in H such that Im(z) > 1 for all z ∈ U, the
open neighborhood in H/Γ corresponding to U ⊂ H/Γ will be coordinatized by q = e2πiz̃,
with z̃ a lift (to H) of a point in H/Γ. (Note that this function is well-defined on the quotient,
as e2πiz is periodic, and U only intersects the top row of tiles in the upper half-plane tiling.)
Then we coordinatize ∞ in this local coordinate chart by q = 0. By introducing the point
∞ with this coordinatization, we get a compactified space H/Γ homeomorphic to the sphere
S2. Note that ∞ is is singular – the stabilizer of ∞ is the infinite cyclic group generated by
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T . (While the points of H/Γ have finite Γ-stabilizers, there is not only no obligation, but no

possibility that the points of H/Γ also have finite Γ-stabilizers.)
Given f , a modular form, we can see from the vanishing of the negative exponents of

f ’s Fourier expansion that f is well-defined at ∞ – explicitly, f(∞) = a0, the constant term
of the Fourier Expansion. We define ord∞(f) to be the smallest n such that an is nonzero in
f ’s Fourier expansion

∑∞
n=0 anq

n. We can now state the following:

Theorem 2.3.1. (Valence Formula). Let f be a modular form of weight k on Γ(1).
Then: ∑

P∈H/Γ(1)

1

nP
ordP (f) + ord∞(f) =

k

12
.

Proof. We consider the region, D, defined by deleting from F the intersection of F
with small circular neighborhoods in C of radius ε around each zero of f along with deleting
the intersection of F with “the neighborhood of infinity” Im(z) > Y := ε−1. We pick ε
small enough that these ε-neighborhoods do not overlap. An example of such a region D is
depicted below.

Figure 2. The Region D.

In D, the function f does not vanish, so by Cauchy’s integral formula, we have∫
∂D

d (log f(z)) =

∫
∂D

f ′(z)

f(z)
= 0

We see that ∂D consists of various parts:

• the horizontal line, from 1
2

+ iY to −1
2

+ iY (the boundary of ε-neighborhood of ∞),
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• the two vertical lines, ω to −1
2

+ iY and ω + 1 to 1
2

+ iY (possibly with some ε
neighborhoods removed),
• the circular arc from ω to ω + 1 (possibly with some ε-neighborhood removed),
• the boundaries of the ε-neighborhoods for each zero P .

In this last case, the total angle around P ∈ H/Γ(1) is 2π if P is not an elliptic fixed point
(this either consists of a full circle around P , if P lies in the interior of F , or of two half-circles
if P lies on the boundary of F and is not ω, ω + 1 or i). At the points ω, ω + 1 and i ∈ C,
the integral of f only encircles a net angle of 2π/3, π/3 and π, respectively. Thus for the
single point in H/Γ(1) corresponding to the orbit of ω, we have a net angle of π/3, while for
the single point corresponding to i we cover a net angle of π.

We now examine the various contributions to the integral. The two vertical lines give 0
as they are in opposite orientations and f is periodic. The horizontal line yields −2πiord∞(f),
which can be seen as follows. Say ord∞(f) = n. We have

f(z) = anq
n + an+1q

n+1 + · · ·

where q = e2πiz. Thus dq = 2πie2πizdz or 1
2πi

dq
q

= dz. Thus:

d(log f) =
1

f

d

dz
(f)dz =

2πinanq
n + 2πi(n+ 1)an+1q

n+1 + · · ·
anqn + an+1qn+1 + · · ·

dq

q

1

2πi
=
(
nq−1 + g(q)

)
dq

where g is a holomorphic function of the complex variable q. As z ranges from 1
2

+ iY to

−1
2

+ iY , we see that q ranges one clockwise rotation around the circle of radius e−2πY . Thus,
by Cauchy’s theorem, the net contribution of this integral is −2πin = −2πiord∞(f).

By Cauchy’s theorem the contribution from the deleted ε-neighborhoods is 2πiordP (f)
for P ∈ H/Γ(1) not an elliptic fixed point (including those nonsingular P ∈ ∂F). For these
points nP = 1, so, vacuously, the integral contributes 2πiordP (f) = 1

nP
2πiordP (f). For P

an elliptic fixed point the net integral is also 1
nP

2πiordP (f). This is because a sum of nP
equal copies of this integral corresponds (by the transformation symmetry of f) to an integral
around a complete circular neighborhood of one of these singular points in the complex plane.
An integral around such a complete circle, by Cauchy’s theorem, yields 2πiordP (f); hence the
original integral around P ∈ H/Γ(1) contributes 1

nP
2πiordP (f). Note that we are subtracting

these contributions from the total integral, as these correspond to deleted neighborhoods.
Finally, we must compute the contribution of the arc from ω to ω + 1. We break up

the integral into two halves: from ω to i and from i to ω + 1. We write

∫ 1+ω

ω

d(log f(z)) =

∫ i

ω

d(log f(z)) +

∫ 1+ω

i

d(log f(z))

=

∫ i

ω

d(log f(z))−
∫ i

ω

d

(
log f

(
−1

z

))
=

∫ i

ω

d(log f(z))−
∫ i

ω

d
(
log
(
zkf(z)

))
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We see that d(log(zkf(z))) = kd log(z) + d(log f(z)) = k
z

+ d(log f(z)). Thus the two
integrals involving d log(f) cancel, yielding

−
∫ i

ω

kd log(z) =
πik

6
.

Putting all these contributions together we see that

−2πi
∑

P∈H/Γ(1)

1

nP
ordP (f)− 2πiord∞(f) +

πik

6
= 0,

whence ∑
P∈H/Γ(1)

1

nP
ordP (f) + ord∞(f) =

k

12
.

�

As an immediate corollary, we see:

Corollary 2.3.2. The dimension of Mk(Γ(1)) is 0 for k < 0 and for k odd. For
positive, even k, we have:

dimMk(Γ(1)) ≤

{
b k

12
c+ 1 x 6≡ 2 mod 12,

b k
12
c x ≡ 2 mod 12.

Proof. Set m = b k
12
c + 1 and choose m distinct points Pi, none of which are elliptic

fixed points. Given any collection of modular forms f1, , fm+1, each of weight k, by elemen-
tary linear algebra we can find a linear combination of the fi, say f , that vanishes at all
these points. However, in this case the LHS of the Valence formula is strictly larger than
the RHS, and the term at infinity and contributions from elliptic fixed points can only in-
crease the RHS. Thus f = 0 identically, and the fi have a nontrivial linear relation. Thus
dimMk(Γ(1)) ≤ b k

12
c + 1. In the case of k ≡ 2 mod 12, we can reduce the bound by one

through divisibility considerations: the RHS of the valence formula must have a denominator
of 6, with a numerator 1 more than a multiple of 6. This will require contributions from each
of the elliptic fixed points; in fact, we need at least a double zero at ω and a single zero at i,
together contributing 2/3 + 1/2 = 7/6. Then we have m− 1 ∈ Z remaining zeroes to choose
from. Repeating the previous argument, we see, in this case, that dimMk(Γ(1)) ≤ m− 1.

�

Corollary 2.3.3. By the previous corollary, dimM12(Γ(1)) ≤ 2. If dimM12(Γ(1)) = 2,
and f and g are two linearly independent modular forms, the function f/g supplies an

isomorphism (of Riemann surfaces) between H/Γ(1) and P1(C).

Indeed, by the valence formula, for all (λ, µ) 6= (0, 0), the weight 12 modular form

λf − µg must have precisely one zero in H/Γ(1). Thus the function ψ = f/g takes every
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value in P1(C) exactly once. This gives a bijective holomorphic map, establishing a Riemann

surface isomorphism between H/Γ(1) and P1(C).

Finally, we note that the valence formula generalizes to other groups Γ. The only
change is that the constant 1/12 in the RHS is replaced with

1

4π
Vol(H/Γ)

where this volume is taken with respect to the Poincare metric on the upper half plane. The
only other group Γ we will deal with is the congruence subgroup Γ(2) (and the isomorphic
group Γ0(4)).

2.4. Eisenstein Series and the Algebra M∗ (Γ(1)). We must now get to the task of
constructing actual modular forms. Firstly, we introduce the “slash operator.” Given a
function on H, k an integer, and γ : H → H a fractional linear transformation (say γ(z) =
(az + b)/(cz + d)), the slash operator is a transformation of f is given by:

(f |kγ)(z) := (cz + d)−kf

(
az + b

cz + d

)
It follows from the cocycle condition (7) that f |k(γ1γ2) = (f |kγ1)|kγ2 for γ1 and γ2 ∈

SL(2,R). Moreover, the slash operator of a function of subexponential growth is itself of
subexponential growth. Therefore if Γ ⊂ SL(2,R) a discrete subgroup, Γ acts on the vector
space of holomorphic functions on H which have subexponential growth via the slash operator.
Modular forms of k are then simply the invariant subspace under this action.

In representation theory, an important technique used to construct a G-invariant vec-
tor is to symmetrize: given an arbitrary vector v one sums (or integrates) over its orbit.
(Sometimes one averages so that the symmetrization operation fixes vectors that are already
invariant.) Moreover, if one has a subgroup v0 that is already invariant under some subgroup
G0 of G, then g(v) depends only upon the left coset of g; indeed, gg0(v0) = g(v0) for all
g0 ∈ G0. We can therefore choose left coset representatives gi for G/G0, and take the sum∑

i gi(v0) to get something G-invariant. This has the potential to reduce the complexity of
the sum if we are lucky enough to start out with a vector v0 that has some invariance; more-
over, if G0 is infinite then this method is imperative, as using the standard symmetrization
procedure,

∑
g∈G g(v0), gives us an infinite sum of copies of v0 as g ranges over all elements

of G0.
We shall apply this technique to construct modular forms of weight k on Γ(1). Note

that the slash operator is a right Γ action. We will apply the symmetrization technique to
the simplest possible function: f(z) = 1. Note that f is already invariant under the slash
operator (1|kT a) for all k and a with T the translation operator defined in (9). (Note that
the slash operator for other γ ∈ Γ(1) introduces negative powers of (cz + d), so f(z) = 1
is not invariant under those transformations.) The (positive and negative) powers of T are
precisely the elements of Γ(1) that fix infinity, so we call this subgroup Γ∞. As we have
seen, there are no modular forms of odd weight; so for all values of k we will be dealing
with, (1|k(−I)) = 1. Thus we lose nothing by using the modular group, PSL(2,Z) := Γ(1),
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as opposed to SL(2,Z) = Γ(1). In this case, the stabilizer of infinity Γ∞ consists solely of
powers of T . So we shall sum the function f(z) = 1 over all right coset representatives of

Γ(1)/Γ∞. We must now turn our attention to finding a natural family of coset representatives

for Γ(1)/Γ∞.
Firstly, for a Möbius transform γ : z 7→ (az + b)/(cz + d), we have γ(∞) = a/c. Thus

γ fixes infinity precisely when c = 0, and since we are working in PSL(2,Z), we know that
the matrices with c = 0 correspond to powers of T . If we multiply an arbitrary 2× 2 matrix(
a b
c d

)
on the left by

(
1 n
0 1

)
, the result is

(
a+ nc b+ nd
c d

)

which has the same bottom row as

(
a b
c d

)
. So let us examine the bottom rows of matrices

in Γ(1). Firstly, such a pair of integers is necessarily prime or else the determinant would
be divisible by their common factor; conversely, by Bezout’s lemma, for any relatively prime
pair c and d, there exists a and b such that ad− bc = 1.

We claim that the bottom row of a matrix uniquely determines its right coset in
Γ(1)/Γ0. We have already seen one direction of this. Conversely, if two (determinant 1,
integer) matrices have the same bottom row (consisting of a pair of relatively prime prime

integers) then we can find an n such that

(
1 n
0 1

)
left multiplies one to the other. Indeed:

if we have ad − bc = 1 and a′d − b′c = 1, then (a − a′)d = (b − b′)c. Since d and c have no
common factors, a−a′

c
= b−b′

d
is an integer, and this is the value of n we desire.

Thus, we can now define:

(13) Ek(z) :=
∑

γ∈Γ(1)/Γ∞

1|kγ =
∑

γ∈Γ(1)/Γ∞

1|kγ =
1

2

∑
c,d∈Z

(c,d)=1

1

(cz + d)k
,

where the 1/2 factor is added because (c, d) and (−c,−d) represent the same matrix in Γ(1)
(the the same coset in Γ(1)/Γ∞, since Γ∞ contains −1). These are called Eisenstein series.

These series are absolute convergent for k > 2, as the number of pairs (c, d) such that
N ≤ |cs + d| ≤ N + 1 is the number of lattice points in in the annulus bounded by circles
radius N + 1 and N ; as the area of this annulus is π(N + 1)2 − πN2 = O(N), we see that
the series is majorized by

∑∞
N=1N

1−k. For odd k, (13) gives 0, as the (c, d)-term cancels out
with the (−c,−d)-term; we would expect this sort of behavior lest Ek for odd K it give us a
modular form of odd weight. Ek(z) gives us modular forms for k = 4 and above.

Now, we can prove the following theorem:

Theorem 2.4.1. The ring M∗(Γ(1)) is freely generated by the modular forms E4 and
E6.
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Proof. We first show that E4 and E6 are algebraically independent. We first demon-
strate that E3

4 and E2
6 , both of weight 12, cannot be multiples of one another.12 For if they

were, and say λE3
4 = E2

6 , for λ 6= 0, then we can let f(z) = E6/E4, a modular function
of weight 2, which satisfies f 2 = λE4 and f 3 = λ−1E6. As f is a function whose square is
holomorphic, f itself cannot have poles and so must be holomorphic. But this contradicts the
fact that there are no holomorphic modular forms of weight 2 – a consequence of Corollary
2.3.2.

We claim that any two modular forms f1 and f2 of the same weight, which are not
multiples of one another, are algebraically independent. For if P (X, Y ) ∈ C[X, Y ] is a poly-
nomial such that P (f1, f2) = 0, then, if we examine weights, we find that each homogeneous
component must vanish identically.13 Let Pd be the weight d component of P . We have
0 = Pd(f1, f2)/fd2 := p(f1/f2). But p can only have a finite number of roots, so that f1/f2

is a constant. We thus see that E3
4 and E2

6 , and therefore also E4 and E6, are algebraically
independent.

Now, the independence of E4 and E6 implies that for each integer k > 0 and nonnegative
integers a, b such that 4a + 6b = k, the various monomials Ea

4E
b
6 of weight k are linearly

independent. This gives a lower bound on the dimension Mk(Γ(1)) for each k: the number
of solutions to 4a+ 6b = k for nonnegative integers a and b. Let us call this number rk. Note
that rk = 0 for k odd. For even k we see that r0 = 1, r2 = 0 and r4 = r6 = r8 = r10 = 1
(corresponding to E4, E6, E2

4 , and E4E6, respectively).
Now, write k = 12l+ r, with 0 ≤ r < 12. Each of the l sets of 12 can be either written

as 4 + 4 + 4 or 6 + 6. We can choose to decompose each 12 into either 0, 1 . . . , l distinct sums
of the form 4 + 4 + 4, correspondingly decomposing the remaining 12’s into l, l − 1 . . . , 1, 0
sums of the form 6 + 6. This gives a total of l+ 1 ways to write 12l as a positive combination
of 4’s and 6’s. The remaining r can be written in terms of 4 or 6 as described above, unless
r = 2. In this case, subtract 6, giving us 12l + 2 − 6 = 12(l − 1) + 8, and use the same
technique (i.e., write 12(l− 1) as a sum of l distinct combinations of 4 + 4 + 4 and 6 + 6 and
the remaining 8 as 4+4). This shows that bk/12c+1 ≤ rk if k 6≡ 2 mod 12, and bk/12c ≤ rk
if k ≡ 2 mod 12. However, rk ≤ dimMk(Γ(1)), and that Corollary 2.3.2 says that exactly
these lower bounds for rk are upper bounds for Mk. Therefore, all are equal, proving that
M∗(Γ(1)) is precisely the algebra freely generated by E4 and E6.

�

12It is important to note first that neither E4(z) nor E6(z) are identically 0. An quick-and-dirty way to see
this is to note that E4(z)→ 1 as Im(z)→∞, which follows trivially from setting q = 0 in the q-expansions
of E4 and E6 that are given in the next section.
13By “homogeneous component” we mean all terms of a given weight; that is, the sum of monomials of the
form cEa4E

b
6 where 4a + 6b = d. For, indeed, if P (E4(z), E6(z)) = 0 for all z, then substitute z 7→ −1/z.

This gives us
∑
d Pd(E4(z), E6(z))zd = 0 where Pd is the weight d component of P . We can once again make

the substitution z 7→ −1/z, giving
∑
d Pd(E4(z), E6(z))z2d = 0, and indeed, arguing by induction, we see

that
∑
d Pd(E4(z), E6(z))zkd = 0 for all k. If the largest d such that Pd appears in P is n, then we see that

the column vector Pd(E4(z), E6(z)) for d = 1, . . . , n is annihilated by the Vandermonde matrix with rows
1, xk . . . , xkn for k = 0, . . . , n− 1. As this Vandermonde matrix is nonsingular for all but a finite number of
z ∈ H, each Pd(E4(z), E6(z)) must vanish all all but a finite number of points in H, whence they must vanish
everywhere.
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Corollary 2.4.2. The inequalities of Corollary 2.3.2 are exact. That is, for positive,
even k:

dimMk(Γ(1)) =

{
b k

12
c+ 1 x 6≡ 2 mod 12,

b k
12
c x ≡ 2 mod 12.

Corollary 2.4.3. (Tongue-in-cheek.) If k is a nonnegative, even integer, the number
of ways of writing k = 4a+ 6b for nonnegative integers a and b is exactly

rk =

{
b k

12
c+ 1 x 6≡ 2 mod 12,

b k
12
c x ≡ 2 mod 12.

Proof. We have already shows the the LHS is less than or equal to rk. Corollary 2.3.2
implies the reverse inequality.14

There are various other common forms for Eisenstein series. Another form, written
Gk, is given by

Gk(z) :=
1

2

∑
(m,n)∈Z2

(m,n) 6=(0,0)

1

(mz + n)k

We can see that:

1

2

∑
(m,n)∈Z2

(m,n) 6=(0,0)

1

(mz + n)k
=

(
∞∑
d=1

1

dk

)1

2

∑
(c,d)∈Z2

(c,d)=1

1

(cz + d)k


=ζ(k)Ek(z)

where ζ(k) is the Riemann zeta function. A final normalization of the Eisenstein series is
given by:

Gk(z) :=
(k − 1)!

(2πi)k
Gk(z).

Each of these three variants has its own advantages; we will tend, following Viazovska, to
use Ek(z) in our work on sphere packings.

14This must be one of the most complicated proofs of this wholly elementary arithmetic fact. There are, of
course, much more direct ways of seeing the reverse inequality without appealing to the dimension of weight
k modular forms and the Valence formula.
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2.5. Fourier Expansions of Eisenstein Series. We now give the Fourier expansion of the
Eisenstein series:

Theorem 2.5.1. The Fourier expansion of the Eisenstein series Gk(z) for k > 2 even,
is given by:

(14) Gk(z) = −Bk

2k
+
∞∑
k=1

σk−1(n)qn

where Bk is the kth Bernoulli number, and σk−1(n) is the sum of the (k− 1)st powers of the
divisors of n.

The Bernoulli numbers, which arise throughout mathematics but were first discovered
in the context of the polynomials giving the sum of the first n kth powers (“Faulhaber’s
formula”), are usually defined via the generating series: x/(ex − 1) =

∑∞
k=0Bkx

k/k!.

Proof. We begin with a well-known identity of Euler (see [35; 40]),

(15) lim
N→∞

N∑
n=−N

1

z + n
= π cot(πz)

We first observe that:

π cot(πz) = πi
eπiz + e−πiz

eπiz − e−πiz
= −πi1 + q

1− q
= −2πi

(
1

2
+
∞∑
r=1

qr

)

with q = e2πiz, as usual. (This equality holds for all z ∈ H, where |q| < 1, so that we
can expand the geometric series.) Substitute into (15), and differentiate this expression

k − 1 times, killing the nettlesome 1
2

term (for k ≥ 2). Divide by (k − 1)! · (−1)k. Note

that
∑

n∈Z 1/(z + n)k converges absolutely for k ≥ 2, whence we can get rid of the limiting
operation on the LHS of (15). So, for k ≥ 2, and z ∈ H we have:

(16)
∑
n∈Z

1

(z + n)k
=

(−1)k−1

(k − 1)!

dk−1

dzk−1
(π cot(π(x))) =

(−2πi)k

(k − 1)!

∞∑
r=1

rk−1qr

This identity is called “Lipschitz’s formula,” though it was certainly known to Eisen-
stein in his work on elliptic functions. For an account of this theory, which derives all the
formulae discussed in this section in a highly novel way, see chapters 1 and 2 of [40].

We return to our formula for Gk(z), and assume k is even. We break off the m = 0
terms:
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Gk(z) =
1

2

∑
n∈Z
n6=0

1

nk
+

1

2

∑
(m,n)∈Z2

m6=0

1

(mz + n)k

=
∞∑
n=1

1

nk
+
∞∑
m=1

∞∑
n=−∞

1

(mz + n)k

whence we can apply (16) and Euler’s formula for ζ(k), k > 0 even, in terms of the Bernoulli
numbers15:

Gk(z) = ζ(k) +
(2πi)k

(k − 1)!

∞∑
m=1

∞∑
r=1

rk−1qmr

=
(2πi)k

(k − 1)!

(
−Bk

2k
+
∞∑
n=1

σk−1(n)qn

)
.

Multiplying by the normalizing factor yields:

Gk(z) = −Bk

2k
+
∞∑
n=1

σk−1(n)qn

as desired.
�

We can now explicitly compute:

G4(z) =
1

240
+ q + 9q2 + 28q3 + · · · ,

G6(z) =− 1

504
+ q + 33q2 + 244q3 + · · · ,

G8(z) =
1

480
+ q + 129q2 + 2188q3 + · · · ,

and similarly:

E4(z) = 1 + 240q + 2160q2 + 6720q3 + · · · ,
E6(z) = 1− 504q − 1663233q2 − 122976q3 − · · · ,
E8(z) = 1 + 480q + 61920q2 + 1050240q3 + · · · .

15Euler’s formula is: ζ(k) = −ikBk(2π)k/(2 · k!), for k even.
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Note that we can immediately supply nontrivial algebraic relations among the various
Eisenstein series. For example, E2

4 is a modular form of weight 8; the space of such modular
forms is 1 dimensional, generated by E8. Thus E2

4 is a multiple of E8; as both have a
constant term of 1 in their Fourier expansion, they are in fact equal. Similarly, we can show
that E4E6 = E10, and that E6E8 = E4E10 = E14. 16

2.6. The Non-Modular E2 and Hecke’s Trick. In considering Eisenstein series of weight
k, we had to assume k > 2 to have absolute convergence. However, we can let k = 2 in (14),
to give a possible “G2” and corresponding E2 and G2. That is, we let:

G2(z) = − 1

24
+
∞∑
n=1

σ1(n)qn

and

(17) E2(z) = 1− 24
∞∑
n=1

σ1(n)qn.

For z ∈ H, this series converges absolutely and exponentially. Note that by construction this
function is periodic. Moreover, the proof of Theorem 2.5.1 suffices to show that

(18) G2(z) =
1

2

∑
n6=0

1

n2
+

1

2

∑
m 6=0

∑
n∈Z

1

(mz + n)2
.

This double sum does not converge absolutely, so it is no longer true that the sum can be
arbitrarily re-ordered. However, G2 does possess some properties similar to those of modular
forms.

Theorem 2.6.1. Let z ∈ H and γ :=

(
a b
c d

)
∈ Γ(1). Then:

G2

(
az + b

cz + d

)
= (cz + d)2G2(z)− πic(cz + d).

Proof. The proof that we shall present, following Zagier, involves “Hecke’s trick.” It is
based on the observation that while (18) does not converge absolutely, it almost does – if we
increase the exponent to 2(1 + ε), then we will have absolute convergence. We introduce:

(19) G2,ε(z) =
1

2

∑
(m,n)∈Z2

(m,n) 6=(0,0)

1

(mz + n)2|mz + n|2ε
.

This series converges absolutely, so applying the transformation γ, an rearranging terms,
gives us:

16Equating the Fourier coefficients of these series give nontrivial identities for sums of powers; e.g.,∑n−1
m=1 σ3(m)σ3(n−m) = (σ7(n)− σ3(n))/120.
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G2,ε

(
az + b

cz + d

)
= (cz + d)2|cz + d|2εG2,ε(z).

We next show that limε→0G2,ε(z) = G2(z) − π
2y

, where y = Im(z). This implies that

the following (non-holomorphic) functions all transform like modular forms:

G∗2(z) =G2(z)− π

2y
,

E∗2(z) =E2(z)− 3

πy
,

G∗2(z) =G2(z) +
1

8πy
.

We shall let:

Iε(z) =

∫ ∞
−∞

dt

(z + t)2|z + t|2ε
.

When ε > 0, we have:

G2,ε(z)−
∞∑
m=1

Iε(mz) =
∞∑
n=1

1

n2+2ε

(20)

+
∞∑
m=1

∞∑
n=−∞

(
1

(mz + n)2 |mz + n|2ε
−
∫ n+1

n

dt

(mz + t)2 |mz + t|2ε

)

The first sum converges absolutely and locally uniformly for ε > −1
2
. Let us examine the

magnitude of the second sum. Note that it is essentially the difference between a sum and an
integral of the corresponding function. By the mean value theorem, given any differentiable
function f bounded on the interval n ≤ t ≤ n + 1, the function f(t) − f(n) is bounded by
maxn≤x≤n+1 |f ′(x)|. Letting f(t) = 1/

(
(mz + t)2 |mz + t|2ε

)
, and noting that we can rewrite

the function in the double summand as
∫ n+1

n

(
1

(mz+n)2|mz+n|2ε −
1

(mz+t)2|mz+t|2ε

)
dt, we see that

each term in the double sum is O (|mz + n|−3−2ε), and so the double sum converges absolutely
and locally uniformly for ε > −1

2
.

Thus, the limε→0G2,ε exists and is obtained by evaluating (20) at ε = 0. This equals
G2(z) by (18) and since the various summands contributed by the integral telescope. Now
we shal turn to the question of evaluating the sum

∑∞
m=1 Iε(mz) as ε→ 0.

Observe that for ε > −1/2:
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Iε(x+ iy) =

∫ ∞
−∞

dt

(x+ t+ iy)2 ((x+ t)2 + y2)ε

=

∫ ∞
−∞

dt

(t+ iy)2(t2 + y2)ε

=
1

y1+2ε

∫ ∞
−∞

dt

(t+ i)2(t2 + 1)ε

where the last integral is obtained by making the substitution y 7→ ty (and dt 7→ ydt). We
already see that the mysterious term term

∑∞
m=1 Iε(mz) depends only on y = Im(z). Let us

define:

I(ε) :=

∫ ∞
−∞

dt

(t+ i)2(t2 + 1)ε
.

We see that
∑∞

m=1 Iε(mz) = I(ε)ζ(1 + 2ε)/y1+ε for ε > 0. Now, I(0) = 0, and

I ′(0) =

∫ ∞
−∞
− log(t2 + 1)

(t+ i)2
dt =

(
1 + log(t2 + 1)

t+ i
− tan−1 t

)∣∣∣∣∞
−∞

= −π

via integration by parts (in particular, letting u = log(t2 + 1) and v = 1
t+i

whence dv =

− 1
(t+i)2

). As ε→ 0, we see that ζ(1 + 2ε) = 1
2ε

+O(1). Thus I(ε) approaches − π
2y

.

Therefore, the function G∗2(z) = G2(z) − π
2Im(z)

, transforms like a modular form. It is

called an “almost holomorphic modular form.” We see that

(cz + d)2

(
G2(z)− π

2Im(z)

)
= G∗2

(
az + b

cz + d

)
= G2

(
az + b

cz + d

)
− π

2Im
(
az+b
cz+d

) .
Recalling (3), and noting17 that −(cz + d)2 + |cz + d|2 = −2icIm(z)(cz + d) we see that

G2

(
az + b

cz + d

)
= (cz + d)2G2(z)− πic(cz + d).

�

We note that E2 transforms like:

(21) E2

(
az + b

cz + d

)
= (cz + d)2E2(z)− 6i

π
c(cz + d)

and that in particular,

17We know already that G2(z) is holomoprhic, so we know in advance that there must be some way of

writing G2

(
az+b
cz+d

)
− G2(z) in trms of the single complex variable z. Thus the fact that, miraculously, the

non-holomorphic factors of Im(z) cancel out should not come as a surprise.
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(22) E2

(
−1

z

)
= z2E2(z)− 6i

π
z.

We shall use this identity in our work on sphere packings.

2.7. The Discriminant Function ∆. The Discriminant function, ∆(z), is one of the most
important modular forms. It is usually defined:18

(23) ∆(z) = q

∞∏
n=1

(1− qn)24

for all z ∈ H, the terms of the product approach 1 exponentially, whence the product con-
verges everywhere and defines a holomorphic function on all of H. We shall now show that
it is modular.

Theorem 2.7.1. ∆(z), as defined by (23), is a modular form of weight 12 on Γ(1).

Clearly ∆ satisfies (11), we must show that it also satisfies (12). Now, let us take the
logarithmic derivative of ∆:

d

dz
log ∆(z) = 2πi− 24

∞∑
n=1

nqn

1− qn
· 2πi

= 2πi

(
1− 24

∞∑
n=1

nqn

1− qn

)

= 2πi

(
1− 24

∞∑
n=1

σ1(n)qn

)
= 2πiE2(z),

the penultimate equality following from expanding qn/(1 − qn) as geometric series and col-
lecting terms.19 Now, we observe that:

1

2πi

d

dz
log

(
∆
(
az+b
cz+d

)
(cz + d)12∆(z)

)
=

1

(cz + d)2
E2

(
az + b

cz + d

)
− 12

2πi

c

cz + d
− E2(z) = 0

by (21), whence we see that (∆|12γ)(z) = C(γ)∆(z), for C some constant depending on γ.
Note, however, that the function C : Γ(1) → R is a homomorphism of groups from Γ(1) to

18Of course it is not at all obvious a priori that ∆ is a modular form, and one might reasonably wonder
where such a thing could have come from. Indeed, ∆ is most natural in the context of elliptic curves (which
also explains its name). We have not discussed the relationship between modular forms and elliptic curves,
so we can offer little further enlightenment on this point, but see [3] or [41].
19This kind of an expansion is called a Lambert series.
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C∗. That is, C defines a character on SL(2,Z). To see that this character is trivial (that
is, C(γ) = 1 for all γ ∈ Γ(1)), we need only check that this is the case on the generators,
S and T . However, ∆ is periodic, whence C(T ) = 1. To show C(S) = 1, we observe that
∆(−1/z) = C(S)∆(z) and evaluate at z = i. Now ∆(i) cannot be 0, as we can see from the
product expansion. Therefore C(S) = 1.

This establishes Theorem 2.7.1.
�

We now note that, as a modular form of weight 12, ∆ must be a linear combination of
E3

4 and E2
6 . Note ∆(z) = q+ · · · , E4(z)3 = 1 + 720q+ · · · , and E6(z)2 = 1− 1008q+ · · · . So

we have:

(24) ∆(z) =
1

1728

(
E4(z)3 − E6(z)2

)
Say h is an arbitrary modular form of a weight k (k even), and let a0 := h(∞) (i.e.,

the constant term of the Fourier expansion). Given some pair of numbers a and b such that
4a+6b = k (which, we have seen, is doable for all even k > 4), then h−a0E

a
4E

b
6 is a modular

form that vanishes at infinity, i.e., that has a 0 constant term in its Fourier expansion. we
divide this modular form by ∆. The resulting function, (h − a0E

a
4E

b
6)/∆, transforms like a

modular form of weight k− 12. Moreover, all of its negative-indexed q-coefficients all vanish,
so it satisfies the necessary growth conditions. Iterating this process gives us a constructive
algorithm to express modular forms in terms of E4 and E6; in fact, applying induction and
Corollary 2.3.2. (to supply us with the base case) this gives an independent proof that
M∗(Γ(1)) = C[E4, E6] (i.e., Theorem 2.4.1).

The product expansion shows us that ∆ does not vanish anywhere on H. In fact, we
can already see this by the valence formula, which shows that can have no roots anywhere
in H since it vanishes to order 1 at ∞. As dimM12(Γ(1)) = 2, we see that ∆ is the unique
modular form of weight 12 with expansion beginning q+ · · · . This is perhaps a more natural
definition than (23). A modular form that vanishes at ∞ is called a “cusp form” – cusp
forms are extremely important in the theory of modular forms.

The Fourier expansion of ∆(z) is of great interest. We define τ(n) to be the coefficient
of qn; τ(n) is called the Ramanujan tau function and it is one of the most intriguing functions
in number theory. The expansion begins:

∆(z) = 1− 24q + 252q2 − 1472q3 + 4830q4 + · · ·

Ramanujan observed, among other remarkable properties of this sequence, that τ(n) is mul-
tiplicative; i.e., τ(mn) = τ(m)τ(n) for m and n relatively prime. Moreover, Ramanujan
gave an estimate of the growth rate of these coefficients, which suggested that they grow
unexpectedly slowly. This conjecture was resolved by Pierre Deligne, who both proved that
Ramanujan’s conjecture followed from the (very difficult) Weil conjectures (concerning the
number of solutions of polynomial equations over finite fields), and then completed the proof
of the necessary part of the Weil conjectures.
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The last thing we shall define in this section is the modular j-invariant, which will
supply us with an explicit isomorphism of the kind called for in Corollary 2.3.3.20 Indeed,
we define:

(25) j(z) :=
E4(z)3

∆(z)
= q−1 + 744 + 169884q + 21493760q2 + · · ·

This function, though failing to abide by the necessary growth rate conditions (it has a first
order pole at ∞, and so is not a modular form per se), defines an absolute invariant under
the action of the modular group: j((az+ b)/(cz+ d)) = j(z) for all a, b, c and d integers such
that ad− bc = 1.

2.8. Theta Series. Let Λ ⊂ Rn be a lattice. We define the function θL : H→ C by:

(26) θL(z) =
∑
x∈Λ

q〈x,x〉/2

This is called the θ-series of the lattice Λ. The theta series of a lattice is an important
invariant of the lattice. Moreover, as we shall see, the Poisson sum formula shows that the
theta series are closely related to modular forms – indeed, in the case of unimodular lattices,
the theta series is in fact a bona fide modular form (though sometimes of non-integral weight).

The simplest lattice is Z ⊂ R. The corresponding theta function is called the Jacobi
theta function. We will write:21

θ(z) =
∑
n∈Z

qn
2

= 1 + 2q + 2q4 + · · · .

Theorem 2.8.1. θ(z) is a periodic function on H, and satisfies

(27) θ

(
− 1

4z

)
=

√
2z

i
θ(z)

for all z ∈ H.

Proof. That θ(z) is periodic is true as by definition it has a q series. The second
follows from the Poisson summation formula. Recall that this says that the if f : R → C
is a well-behaved function which vanishes sufficiently quickly at infinity, then

∑
n∈Z f(n) =∑

n∈Z f̂(n).22 Indeed, if we define g(x) :=
∑

n∈Z f(x + n), then g is a manifestly periodic
function (given sufficiently fast decay at infinity), so the RHS can be written as a Fourier

20Though the important point about corollary 2.3.3. is that any ratio of non-proportional modular forms of
weight 12 yields an isomorphism from H/Γ(1) to P1(C).
21Note that this is strictly speaking the theta series of the lattice

√
2Z, not Z itself, whose theta series would

be a sum of terms qn
2/2. We wish to follow Zagier’s convention.

22Recall that the Fourier transform, which will figure importantly in the Cohen-Elkies linear programming

bound, is given by f̂(x) :=
∫∞
−∞ f(y)e2πiyxdy.
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series: g(x) =
∑

n∈Z cne
2πinx, with cn =

∫ 1

0
g(x)e−2πinxdx = f̂(−n). Thus

∑
n∈Z f(x + n) =∑

n∈Z f̂(−n)e2πinx. Evaluating this expression at x = 0 yields the Poisson sum formula.

Now, let f(x) = e−πtx
2
, with t > 0. We have:

f̂(y) =

∫ ∞
−∞

e−πtx
2+2πixydx =

e−πy
2/t

√
t

∫ ∞
−∞

e−πu
2

du

where u =
√
t
(
x− iy

t

)
. Now, we shift the path of integration to the real line: observe that,

as Re(u) → ∞, the integrand e−πu
2

approaches 0 uniformly as Re(u) → ∞; also note that

that e−πz
2

is holomoprhic everywhere (so that shifting the contour does not cross any poles).
Thus the integral reduces to the usual integral of a Gaussian, and we get:

f̂(y) =
e−πy

2/t

√
t
.

Therefore, for t > 0, we have:

(28)
∞∑

n=−∞

e−πn
2t =

1√
t

∞∑
n=−∞

e−πn
2/t.

Thus we see that (27) holds for z = it/2, with t > 0. However, both sides of (27) define
a holomoprhic function on H. The two functions agree on the positive imaginary axis, hence
they agree for all H.

�

The two symmetries of θ, that is, z 7→ z + 1 and z 7→ −1/(4z) (which we view as

z 7→ 0z−1/2
2z+0

, so that the transformation corresponds to an element of SL(2,R)), generate a
subgroup of SL(2,R). This subgroup, as we shall see, is a discrete subgroup of SL(2,R) and
contains a congruence subgroup of SL(2,Z). Thus θ(z) is thus a modular form “of weight
1/2” – which for our purposes we shall define as a function whose square is a modular form
of weight 1.

The underlying congruence subgroup for θ is Γ0(4). It is interesting to note that θ
has an “extra” symmetry, not contained in Γ0(4); namely, z 7→ −1/(4z). This is a special
example of a “Fricke involution.” In general, we can extend the group Γ0(N) by the element

WN = 1√
N

(
0 −1
N 0

)
. Note that W 2

N = −1, which acts like the identity on H (hence

“involution”) and that WN normalizes Γ0(N). Thus the group generated by WN and Γ0(N)
is given by Γ0(N) ∪ Γ0(N)WN . It is often written Γ+

0 (N).
In the case we are dealing with, N = 4, the group Γ+

0 (4) is actually generated by

T =

(
1 1
0 1

)
and W4. (This is not true for general N .) We shall record this as:

Theorem 2.8.2. The group Γ+
0 (4) is generated by T , the translation matrix, and W4,

the Fricke involution.
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Proof. We define

T̃ := W4TW
−1
4 =

(
1 0
4 1

)
.

We shall show that T and T̃ generate the image of Γ0(4) in PSL(2,Z). This implies that,

up to a possible difference in sign, every element in Γ0(4) is in 〈T, T̃ 〉. As W 2
4 = −I, we see

that 〈T,W4〉 = Γ+
0 (4). Now, say that γ =

(
a b
c d

)
∈ Γ0(4). The idea of the argument is to

multiply by T or T̃ so as to decrease the quantity a2 + b2. Let us call the sum of the squares
of the top row of a matrix the “gauge” of the matrix.

We see that a must be odd, else the determinant of γ would be even. Thus |a| 6= 2|b|.
If |a| < 2|b|, then one of b + a or b − a is less than b in absolute value. Thus either γT or
γT−1 has a strictly smaller gauge. If |a| > 2|b| and |b| 6= 0, then a+4b or a−4b has a strictly

smaller absolute value than a, whence either γT̃ or γT̃−1 has a strictly smaller gauge. We

can decreasing the gauge of our matrix by multiplying on the left by T±1 or T̃±1 until b = 0.

This matrix must, up to sign, be a power of T̃ . Thus completes our argument.
�

We now introduce two other important series, which we shall call, following Zagier, θM
and θF . These are given by:

θM(z) =
∑
n∈Z

(−1)nqn
2

= 1− 2q + 2q4 − 2q9 + · · ·(29)

θF (z) =
∑

n∈Z+ 1
2

qn
2

= 2q1/4 + 2q9/4 + 2q25/4 + · · ·(30)

An application of the Poisson sum formula as in Theorem 2.8.1 will show that these are both
modular forms of weight 1/2 on Γ0(4), like θ. Moreover, we have the “Jacobi identity”:

(31) θ(z)4 = θM(z)4 + θF (z)4.

This expresses an equality among weight 2 modular forms on Γ0(4). This identity can be
proved by showing, through arguments analogous to those laid out for Γ(1) in this chapter,
that the space of modular forms of weight 2 on Γ0(4) is 2 dimensional. Thus we need only
verify that 1 coefficient of the q expansion of each side of (31) agrees with the other; indeed,
both start 1 + 8q + · · · .

The triplet of θ, θM and θF are closely related to a similar triplet of modular forms on
Γ(2). This is due to the fact that there is an exceptional isomorphism between Γ0(4) and
Γ(2), which is given by conjugation by the element(

2 0
0 1

)
,
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which, it is worth noting, is in GL(2,R), not SL(2,R). This corresponds to the doubling
transformation; thus a modular form f on Γ0(4) can be turned into a modular form on Γ(2)
by taking f(z/2). We therefore have the triplet of modular forms of weight 1/2 on Γ(2):

θ00(z) =
∑
n∈Z

eπin
2z,(32)

θ01(z) =
∑
n∈Z

(−1)neπin
2z,(33)

θ10(z) =
∑

n∈Z+ 1
2

eπin
2z.(34)

Thus θ4
ij(z) each define modular forms of weight 2 on Γ(2). Inspection of the q expan-

sions show that these modular forms satisfy:

θ4
00(z + 1) = θ4

01(z),(35)

θ4
01(z + 1) = θ4

00(z),(36)

θ4
10(z + 1) = − θ4

10(z);(37)

and an application of the Poisson sum formula yields:

θ4
00

(
−1

z

)
= − θ4

00(z),(38)

θ4
01

(
−1

z

)
= − θ4

10(z),(39)

θ4
10

(
−1

z

)
= − θ4

01(z).(40)

We also have the Jacobi identity:

(41) θ4
00(z) = θ4

01(z) + θ4
10(z).

These functions and the above identities will figure importantly in our work on sphere packing.
We also have the following theorem, which we will state without proof, as the argument is
essentially the same as the one we have already seen for Γ(1).

Theorem 2.8.3. The space of modular forms on Γ(2) is freely generated by θ00 and
θ01, or by any pair of the triplet θ00, θ01 and θ10.

Identities (32)–(40) imply that the modular form 1
256
θ8

00θ
8
01θ

8
10 is cusp form of weight 12

on Γ(1) with q expansion beginning q +O(q2). This shows that
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(42) ∆(z) =
1

256
θ8

00θ
8
01θ

8
10.

We end this section by briefly returning to theta series associated to multidimensional
lattices; in our case, of course, we want to know the theta series of E8 and of Λ24.

We see via an application of the Poisson sum formula and the unimodularity (i.e., self-
duality) of E8 that the corresponding theta series is a modular form of weight 4 on Γ(1). As
the constant term is 1, we see, in fact, that the theta series of E8 is exactly E4(z); that is:

(43) ΘE8(z) = E4(z) = 1 + 240q + · · · .
The Leech lattice has a noteworthy theta series, too. We see via Poisson summation,

and self-duality of Λ24 that Λ24 has a theta series given by a modular form of weight 12 on
Γ(1). Moreover, we see that it begins 1 +O(q2) as no vectors have a norm of 2 by Theorem
1.3.2. As the space of weight 12 modular forms is 2 dimensional, this determines the theta
series:

(44) ΘΛ24(z) =
1

12

(
7E4(z)3 + 5E6(z)2

)
= E12(z)− 65520

691
∆(z) = 1 + 196560q + · · · .

The integrality of the coefficients of this q-series (which is manifest since they represent
a count of lattice points) gives a fascinating congruence for the Ramanujan tau function;
namely, that τ(n)−σ11(n) is always divisible by 691. This extraordinary divisibility property
was first observed by Ramanujan.

2.9. Ramanujan’s Derivative Identities. The derivative of a modular form is not itself
a modular form. For say we define the operator:

Df = f ′ :=
1

2πi

df

dz
= q

df

dq
=
∞∑
n=1

nanq
n

for a modular form f . We have:

f ′
(
az + b

cz + d

)
= (cz + d)k+2f ′(z) +

k

2πi
c(cz + d)k+1f(z).

However, the operator ϑk defined by:

ϑkf := f ′ − k

12
E2f

maps Mk(Γ(1)) to Mk+2(Γ1). (This can be readily seen by an application of (22)). The
operator ϑk is called the Serre derivative, and will often be notated simply ϑ (since usually
will know the weight of the modular form to which we will apply it). This suggests that the

extended ring M̃∗(Γ(1)) := M∗(Γ(1))[E2] = C[E2, E4, E6] is of interest when we are dealing
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with issues of differentiation. We call this the ring of quasimodular forms on Γ(1). We will
soon discuss a more intrinsic way of defining a quasimodular form, which works for other
groups, but for now we shall use the ad-hoc approach of saying that a quasimodular form on
Γ(1) is imply a polynomial in E2 and other modular forms.

Theorem 2.9.1. The ring M̃∗(Γ1) of quasimodular forms on Γ1 is closed under differ-
entiation. In particular, we have the “Ramanujan derivative identities”:

(45) E ′2 =
E2

2 − E4

12
,

(46) E ′4 =
E2E4 − E6

3
,

(47) E ′2 =
E2E6 − E2

4

2
.

Proof. Observe that ϑE4 and ϑE6 are modular forms of weight 6 and 8, respectively.
Hence they must be constant multiples of E6 and E2

4 , respectively. By examining q series, we
find that the constants are −1/3 and −1/2, respectively. To demonstrate the first identity,
we differentiate (22), and find that E ′2 − 1

12
E2

2 is a modular form of weight 4. Therefore it is
a multiple of E4; examining the constant terms of the q series we find that the constant is

−1/12. As these are the generators of the ring M̃∗(Γ1), we see that M̃∗(Γ1) is closed under
differentiation.

�

We shall see that (46) will be of some use to us in our work on sphere packings.
Indeed the function (3E ′4)2 = (E2E4 − E6)2 will appear as the numerator of Viazovska’s
+1-eigenfunction.

2.10. Laplace Transforms of Modular Forms and Fourier Eigenfunctions. There is
an elegant way of constructing eigenfunctions of the Fourier transform via taking the Laplace
transform of a modular form. This construction gives the starting point for Viazovska’s work,
and is the first strong suggestion that modular forms might be useful in constructing the 8
and 24-dimensional magic functions. Indeed, say we have x ∈ Rn, and we define:

f(x) =

∫ ∞
0

g(t)e−πt|x|
2

dt.

We take the Fourier transform:

f̂(y) =

∫
Rn

(∫ ∞
0

g(t)e−πt|x|
2

dt

)
e−2πi〈x,y〉.
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Now, assuming g(t) is sufficiently well-behaved, then we can swap the two integrals. Recall
that the n-dimensional Fourier transform of a Gaussian is given by:23

F
(
e−πt|x|

2
)

= t−
n
2 e−π|x|

2/t

Thus, we have:

f̂(y) =

∫ ∞
0

g(t)t−
n
2 e−π|x|

2/tdt.

Applying the transformation t 7→ 1/t, we have

f̂(y) =

∫ ∞
0

g(1/t)t
n
2
−2e−π|x|

2tdt.

Now, if g(t) = φ(it), where φ is a modular form of weight 2− n/2, then g(1/t)tn/2−2 =
φ(i/t)tn/2−2 = i2−n/2φ(it) = i2−n/2g(t). Thus, in this case the function f(x) is an eigenfunc-
tion with eigenvalue i2−n/2.

In the cases of n = 8 and n = 24, we have 2 − n/2 = −2 and −10 respectively. This
will provide us (in both cases) with a −1 eigenfunction.

3. The Cohn-Elkies Linear Programming Bound

In 2003, Henry Cohn and Noam Elkies published their so-called “linear programming
bound,” named in analogy with the linear programming bounds used to solve the 8 and
24-dimensional kissing number problem. 13 years later, Viazovska showed that this bound
was optimal in 8 and 24 dimensions using an ingenious construction based on modular forms.
Presently we explain the bound and some of its more immediate implications.

3.1. The Bound. When we refer to “sufficiently well-behaved” functions we mean a function
to which to which we can apply the Fourier transform, such that we can apply Fourier
inversion and the Poisson Sum Formula. As it shall turn out, all the functions we will
deal with belong to Schwartz Space, so more subtle real analysis will not play a role in our
argument.

Theorem 3.1.1. Let f : Rn → R be a suitably well-behaved, non-zero function of
sufficiently fast decay. Assume f satisfies

(48) f(x) ≤ 0 for all |x| > 1,

and

(49) f̂(t) ≥ 0 for all t ∈ Rn.

23See [23].
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Then the center-density of any n-dimensional sphere packing cannot exceed

(50)
f(0)

2nf̂(0)
.

Proof. We will prove this bound for periodic packings, which in fact proves the result for
all packings, for, as we have shown above, a periodic packing approximates the density an
arbitrary packing arbitrarily well.

Suppose a sphere packing is given by translates of a lattice Λ by vectors v1, . . . , vN ,
such that vi − vj /∈ Λ for all i 6= j. We scale so that no two distinct sphere-centers have
distance < 1 between them; that is, we make our spheres each have radius 1/2. Then the
center-density δ is given by:

δ =
N

2n|Λ|
.

From the Poisson summation formula, we have:∑
x∈Λ

f(x+ v) =
1

|Λ|
∑
t∈Λ∗

e−2πi〈v,t〉f̂(t)

for v ∈ Rn. We now sum on v ranging over the differences between the vectors vi (including
N terms of vi − vi = 0):

∑
1≤j,k≤N

∑
x∈Λ

f(x+ vj − vk) =
1

|Λ|
∑

1≤j,k≤N

∑
t∈Λ∗

f̂(t)e−2πi〈vj−vk,t〉

=
1

|Λ|
∑
t∈Λ∗

(
f̂(t)

∑
1≤j,k≤N

e−2πi〈vj−vk,t〉

)

=
1

|Λ|
∑
t∈Λ∗

(
f̂(t)

∑
1≤j,k≤N

e−2πi〈vj ,t〉e2πi〈vk,t〉

)

=
1

|Λ|
∑
t∈Λ∗

(
f̂(t)

∑
1≤j≤N

e−2πi〈vj ,t〉
∑

1≤k≤N

e2πi〈vk,t〉

)

=
1

|Λ|
∑
t∈Λ∗

(
f̂(t)

∑
1≤j≤N

e2πi〈vj ,t〉
∑

1≤k≤N

e2πi〈vk,t〉

)

=
1

|Λ|
∑
t∈Λ∗

f̂(t)

∣∣∣∣∣ ∑
1≤j≤N

e2πi〈vj ,t〉

∣∣∣∣∣
2

Every term in the final equation is non-negative, so we bound the sum below by the

single term with t = 0. This gives us a lower bound of N2f̂(0)
|Λ| . On the LHS of the above, we
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see that x + vj − vk is the vector from the sphere-center vk to the sphere-center x + vj. By
assumption, this always has a magnitude ≥ 1, unless vk = x+vj. As the vi represent distinct
cosets of Λ, this latter situation occurs if and only if x = 0 and vj = vk. Thus the LHS sum
can be given by an upper bound of Nf(0), and we have:

Nf(0) ≥ N2f̂(0)

|Λ|

or, equivalently,

δ ≤ f(0)

2nf̂(0)

finishing the argument.
�

A careful examination of the above argument reveals that it is extremely wasteful: we
are bounding all the terms outside the unit ball on the RHS above by 0 and all but one of
the terms on the LHS below by 0. Indeed, for most almost all dimensions n, it is expected
that even a theoretical “optimal function” for the Cohn-Elkies bound (that is, a function for

which 1/2n · f(0)/f̂(0) is minimal24) might be substantially greater than the densest possible
sphere packing. For equality of δ and f(0) to occur – that is, for the bound to actually
equal the density of the periodic packing packing whose centers are given by the union of
Λ-translates of vi – we should have

Nf(0) =
N2f̂(0)

|Λ|

which, we see from the above argument, will follow if, say, f̂(t) vanishes on all Λ∗, and f
vanishes on all x+ vj − vk, x ∈ Λ, j 6= k. 25

In particular, if we conjecture that a lattice packing Λ is optimal, then, if we appeal to
the Cohn-Elkies bound to prove optimality, it suffices to find an f : Rn → R satisfying the
following26:

1) f(x) ≤ 0 for all |x| > 1, and f(x) = 0 for x ∈ Λ with x 6= 0,

2) f̂(x) ≥ 0 for all x ∈ Rn, and f̂(x) = 0 for all x ∈ Λ with x 6= 0,

24The question of the existence of such an optimal function for a general dimension n appears to be open –

that is, we do not know whether there exists a function f that attains the infimum of f(0)/f̂(0) taken over
all functions f : Rn → R satisfying (48) and (49).
25Conversely, if Nf(0) = N2f̂(0)/|Λ|, then f(t) must equal 0 for all t ∈ Λ∗ such that

∑
1≤j≤N e

2πi〈vj ,t〉 6= 0.
26Indeed, in the case of lattice packings these conditions are necessary and sufficient for the Cohn-Elkies
bound to prove optimality. For, in the case of a lattice, we see that

∑
1≤i≤N e

2πi〈vj ,t〉 = e2πi〈0,t〉 = 1 6= 0.

(See the previous footnote.) Thus for the Cohn-Elkies bound to prove optimality, we must find an f satisfying
1), 2) and 3); moreover, finding such an f suffices to prove optimality.
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and

3) f(0) and f̂(0) satisfy

f(0)

f̂(0)
=

1

2n|Λ|
.

Note that conditions (48) and (49) and the estimate (50) are invariant under rotation.
Thus if f is an optimal function (that is, gives us the minimal possible upper bound (50) for
δ), then so are all precompositions f ◦ ρ for ρ ∈ O(n,R). In fact, we may average such an
f over all such rotations ρ to obtain a new, rotationally symmetric optimal function: thus,
without loss of generality, we may assume that f is radial.27

One might wonder whether this is, in fact, a misleading assumption to make. Say that
a function f satisfies 1), 2) and 3) for a lattice Λ. If x ∈ Rn is an arbitrary point whose

magnitude equals that of a vector x0 ∈ Λ (or ∈ Λ∗), then f(x) = 0 (respectively, f̂(x) = 0)
of necessity: otherwise, by inequality 1), the symmetrized f would be strictly less than 0 for

all x with |x| = |x0|, and so cannot equal zero at x0.28 (Similarly, the symmetrized f̂ would
be strictly greater than 0 for all x a vector with a magnitude equal to that of an element

of the dual lattice, contradicting the vanishing of f̂ at every dual lattice vector.) Thus a
non-radial f satisfying 1), 2) and 3) would need to display the rather strange behavior of

vanishing on concentric spheres of radii equal to the magnitudes of Λ (and, likewise, f̂ would
need to vanish on concentric spheres of radius equal to the magnitudes of Λ∗) before we apply
rotational symmetrization. Thus searching for a radial f in those cases where we believe the
magic function exists seems to be most plausible.

For radial functions f : Rn → R, we rather abusively write f(r) in lieu of the more
accurate but cumbersome “f(x) for some x with magnitude equal to r.” Observe that if f
is radial and satisfies 1), 2) and 3), then, for the signs of the radial f : R → R to work out
correctly, the roots of f are rather constrained. In particular:

A) f(1) = 0, vanishing to odd order; with f(r) = 0 vanishing to even order for all
r > 1 a lattice magnitude.29

B) f̂(r) = 0 for all r > 0 equal to the magnitude of a vector in Λ∗; with this vanishing
occurring to even order for all such r.

C) f̂(0) = 2n|Λ| · f(0) > 0.

27We also see that the space of optimal functions is convex – that is, if f and g are both optimal functions
in dimension n, then so is the average f+g

2 .
28Technically speaking, it is possible for f to be negative on a set of measure 0 on the sphere of radius |x0|;
the argument we have presented shows that the set of all x such that f(x) < 0 (with the inequality strict)
has measure 0 in the the sphere |x| = |x0| – otherwise symmetrization would lead to the average of f being
strictly less than 0 everywhere on this sphere, which violates condition 1).
29Note that, for an optimal lattice sphere packing where every sphere has radius 1/2, the minimal nonzero
magnitude of a vector in the lattice must be 1, else all points on the lattice are > 1 unit away from one
another, and we can multiply by the reciprocal of this minimal distance and get a strictly denser lattice
whose vectors still satisfy the property of being at least 1 unit away from each another.
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This way, f starts positive, crosses the r axis at r = 1, and then bounces back down at every

greater lattice magnitude (thereby staying negative). Meanwhile f̂ starts positive, hits zero
at every magnitude of the dual lattice Λ∗, but always bounces back up (thereby remaining
positive). As we shall see, the greater the order of vanishing that we insist that f take at

the magnitudes of Λ (and likewise for f̂ and Λ∗), the more constrained f becomes. Thus it is
simplest to assume that f has a first order zero at 1 with double-zeroes at all greater lattice

magnitudes, while f̂ has double-zeroes for all nonzero dual lattice magnitudes. We call such
an optimal function f , for which the Cohn-Elkies bound gives an upper bound equal to the
density of a known sphere packing, a “magic function.”

Figure 3. The graph of a “magic” function f (left) and its Fourier transform f̂ (right)

Famously, controlling f and its Fourier transform f̂ simultaneously is extremely difficult
- this is the root of the Heisenberg uncertainty principle [23]. It should therefore not be
terribly surprising that finding a function that satisfies A) – C) is very hard - indeed, such
a function f associated to a lattice Λ does not appear to exist in almost all dimensions.
Fascinatingly, however, Cohn and Elkies were able to find functions f that get extremely
close to the hypothetical magic function in dimensions 2, 8 and 24. (They give a complete
resolution to the trivial 1-dimensional sphere packing problem using the linear programming
bound in their paper, which we shall soon describe). Viazovska found an explicit construction
for the 8-dimensional magic function in 2016; a result almost immediately followed by an
explicit construction for the magic function in 24 dimensions.

We conclude this section by giving an equivalent form of the Cohn-Elkies bound, which
is easier to use for practical applications.

Theorem 3.1.2. Let f : Rn → R be a suitably well-behaved, non-zero function of
sufficiently fast decay. If f satisfies

1) f(0) = f̂(0) > 0.

2) f(x) ≤ 0 for all |x| > r.

3) f̂(t) ≥ 0 for all t ∈ Rn.

Then the center-density of any n-dimensional sphere packing cannot exceed (r/2)n.
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Proof. Apply Theorem 3.1.1. to the function g(x) = f(rx). Then g(0) = f(0) and

ĝ(0) = 1
rn
f̂(0). Then δ ≤ (r/2)n · f(0)/f̂(0) = (r/2)n.

�

3.2. The Case of Dimension 1. Cohn and Elkies give a rather entertaining proof that
the lattice packing Z ⊂ R1 is the densest packing of 1-spheres (i.e., intervals). This is, of
course, entirely trivial, as 100% of space can be covered by tacking intervals together. But
it is somewhat itneresting to see how the Cohn-Elkies method proves this vacuous result.

We shall let the magic function equal “the obvious” function that will force the roots
to behave in accordance awith A) and B).

f(x) =
1

1− x2

(
sin(πx)

πx

)2

It is evident that this function’s Fourier transform has compact support contained
[−1, 1]. For we are taking the integral:

(51) f̂(y) =

∫ ∞
−∞

1

1− x2

(
sin(πx)

πx

)2

e−2πixydx

and the integrand extends to a holomorphic function on the complex plane such that:

f(it) =
1

4π2(1 + t2)t2
(
e2πt − 2 + e−2πt

)
.

This is O(e2πt) as t → ∞, and O(e−2πt), t → ∞. Thus we can apply Cauchy’s integral
formula to (51) and push the contour out to +i∞ if y > 1 and −i∞ if y < −1, making the

integral arbitrarily small. Thus for |y| > 1, f̂(y) = 0. For |y| < 1, we can check that:

f̂(y) =
2π(1− |y|) + sin(2π|y|)

2π
.

The derivative of this function is cos(2πy)− 1, so it is clear by elementary calculus that f̂(y)

is strictly decreasing from 0 to 1. As f̂(y) = 1 at y = 0 and f̂(y) = 0 at y = 1, we see that

the sign of f̂(r) is strictly positive for 0 < y < 1. By symmetry, f̂(y) > 0 for −1 < y < 0.

Thus we have f(r) ≤ 0 for all r > 1, and f̂(r) ≥ 0 always. Moreover, f(r) satisfies conditions
A) and B) corresponding to the packing Z ⊂ R1, so this the Z-packing is indeed optimal,
with an impressive density of 100%.

While this argument is somewhat tongue-in-cheek, it does teach us some things, though
rather more about the use of the Cohn-Elkies bound than about the not-too-onerous problem
of packing 1-balls in R1 as tightly as possible. In particular, we see that a sin2 factor helps
to force the zeroes into place while also behaving fairly nicely with respect to the Fourier
transform. This insight is, as we shall see, critical to Viazovska’s construction.
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3.3. Some Numerical Consequences of the Cohn-Elkies Bound. We shall briefly dis-
cuss some of the fascinating computational consequences of the Cohn-Elkies bound. If we
want to find a function f : Rn → R which will give us a good sphere packing bound in n
dimesions, it is helpful to assume f to has the form:

f(x) = p(r2)e−πr
2

, |x| = r

for x ∈ Rn, and try to optimize the polynomial p for increasing degrees.
The utility of this approach is that the Fourier transform of this function will be another

function of the same form - that is, another polynomial in r2 times e−πr
2
.

Indeed, following [9], say we let pj(x) = L
n/2−1
j (2πx), where Lαj refers to the Laguerre

polynomial of degree j and degree α = n/2 − 1. Recall that the Laguerre polynomials are
defined to to be the set of orthogonal polynomials with respect to the measure x−αe−x on
[0,∞). Explicitly:

Lαj (x) =
x−αex

j!

dj

dxj
(xα+je−x).

It is easy to verify that pj(|x|)2e−π|x|
2

is a radial eigenfunction of the Fourier transform

of eigenvalue (−1)j. That is, if f(x) = pj(r
2)e−πr

2
, then

f̂(t) = (−1)jpj(|t|2)e−π|t|
2

.

As the Laguerre polynomials pj defined above form a basis for all polynomials, we see,
by writing a general p in the basis pj, that there exists a linear operator T on the space of

polynomials in r = |x|, such that, if f(x) = p(r2)e−πr
2

for an arbitrary polynomial p, then

f̂(t) = T (p)(|t|2)e−π|t|
2

.

for all p. Note that T (pj) = (−1)jpj; the pj for a diagonalizing basis for the operator T . So
writing p in the basis of Laguerre polynomials helps to simplify computations.

The original application of the linear programming bound, due to Cohn and Elkies
themselves, went like this: we consider an arbitrary linear combination g of the odd-indexed
Laguerre polynomials, p1, p3, . . . , p4m+3 for some value m. (Note that this is a −1 Fourier
eigenfunction.) Then we insist upon p having m double roots at some set of values z1, . . . , zm,
as well as a root at 0. (Counting the number of degrees of freedom reveals that the polynomial
g should be unique for a specified set of zi). We try to adjust the zi so as to minimize the value
r of the smallest sign change of g. Then we solve for h, a linear combination of p0 . . . p4m+2,
with double roots at z1, . . . zm, such that g + h has a double root at r. We pick the signs of

g and h so that g + h is positive. We let f = −g + h, and note that f̂ = g + h.
Now, our function f will be nonpositive outside of radius r, and will have an everywhere

nonnegative Fourier transform. Moreover, f(0) = f̂(0). We thus know from Theorem 3.1.2
that an n dimensional sphere packing has a center density bounded above by the number
(r/2)n.
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Based on computer search, Cohn and Elkies found that as m increases the number r
would decrease, apparently converging to an “optimal” bound in each dimension n. However,
despite numerical evidence, there was (and still is) no guarantee that the optimization method
will actually converge.

Moreover, for most n, the Cohn-Elkies bound was substantially larger than the densest
known packing. However, in dimensions 2, 8 and 24, a miracle occurred – it appeared that
the functions f computed in this way actually converged to above-described magic functions
associated to the lattices A2, E8 and Λ24. In dimension 8, the values zi settled around

√
2k,

k ≥ 2 a positive integer while the number r approached the
√

2, exactly as needed. In 24
dimensions, the numbers zi also approached

√
2k, k ≥ 3, while the number r approached 2.

[6] shows how close the numbers zi are for m = 11:

Table 1. Values of r2 and z2
i for i = 1, . . . , 11

Case r2 i = 1 i = 2 i = 3 i = 4 i = 5

8 2.0000 4.0000 6.0001 8.0004 10.0023 12.0095
24 4.000 6.001 8.003 10.010 12.029 14.0078

Case i = 6 i = 7 i = 8 i = 9 i = 10 i = 11

8 14.0448 16.1322 18.4054 20.8540 23.8869 27.7387
24 16.192 18.426 20.855 23.581 26.772 30.839

We see, however, that as the zi increase, they begin to get larger than their expected value,
and that this discrepancy increases with i.

One might wonder if optimizing over the roots is actually the most efficient way to
approximate the magic function. Indeed, since we know already where the optimal function’s
roots “should” be in dimensions 8 and 24, why don’t we just insist upon their correct location
a priori? In other words, why don’t we insist that, for 8 dimensions, say, our function fk (a
linear combination of the pj) satisfies:

fk(0) = 1

fk(x) vanishes to order 1 at |x| = r1

fk(x) vanishes to order 2 at |x| = r2, . . . , rk

f̂k(x) vanishes to order 2 at |x| = r2, . . . , rk

There are 4k constraints, so we can assume fk to be a combination of pj with j =
0, . . . , 4k − 1. This method is rather promising; note that the constraint we have omitted is

that f̂(0) = 1. Indeed, if this sequence of fk converges to some f then f̂(0) = 1 is guaranteed
by Poisson Summation. Unfortunately, as is discussed in [9], despite a very promising start
for the 8 dimensional case, this method begins to stop working after k = 40 (which gives an
upper bound of about 1.0000009656 times the actual density of E8). Indeed, by k = 120,
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the bound has regressed to 1.5572034878 times the expected bound. In 24 dimensions, the
failure is even more dramatic; the bound decreases to about 1.1082380574 times the expected
(Leech lattice) density for k = 20, but by k = 60 gives us −3.7219923464 of the expected
density, indicating that an unwanted sign change has occurred.

Indeed, we are fighting against the divergence phenomenon that we observed in the
original Cohn-Elkies approximation method. As we find good approximations to the early
roots of the magic function, the later roots of the approximation begin to diverge from their
expected value. Strong-arming these roots into place, despite not technically overconstraining
the system of polynomials, does not permit fk to have enough breathing room. In turn, fk
fights back, eventually introducing extra (unwanted) sign changes.

[9] suggests an alternate, far less obvious method of root-forcing: for a given k the
first two-thirds of the root locations (r1 through rb2k/3c are left unchanged). Thereafter one
perturbs the squares of the later roots by a quadratically growing amount so that the last
root’s square magnitude is off by a factor of 1.25. This does give good bounds, and appears
to converge nicely.

Part of the problem with the naive method is that these more refined approximations
seems to accumulate roots elsewhere in the complex plane. This phenomenon is reminiscent
of partial products for theta series – for a given root of unity ω, the polynomials in q will
vanish at q = ω. Meanwhile, the theta function itself accumulates essential singularities
along the unit circle. Similarly the actual magic function seems to have a (rather strange-
looking) natural boundary (see [9] for a very interesting discussion of this phenomenon.) In
constraining the function so as to only have the specified real roots, we fail to allow the
function enough freedom to vanish at these other points.

This sort of problem exposes the fascinating difficulties one encounters in trying to

control the vanishing behavior of f and f̂ simultaneously. Moreover, it shows how subtle the
issue of convergence for these approximations might be.

Another striking result discovered through these computations was that, in the case
of 8 and 24 dimensions, the magic functions appeared to be unique: various methods of
approximate optimization, if they converged at all, converged to (what seemed to be) the
same function. On the other hand there are already several known magic functions for
dimension 1, and the magic function in dimension 2 (whose existence is still unknown) is not
expected to be unique.

We conclude this section with a final note. Cohn and Miller were able to approximate
the Taylor expansions of the (apparently unique) magic function f and its Fourier transform

f̂ in dimensions 8 and 24. Mysteriously, they found that the quadratic coefficients appeared

to be rational for both f and f̂ :

f8(x) = 1− 27

10
|x|2 +O(|x|4)(52)

f̂8(x) = 1− 3

2
|x|2 +O(|x|4)(53)

in dimension 8 and
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f24(x) = 1− 14347

5460
|x|2 +O(|x|4)(54)

f̂24(x) = 1− 205

156
|x|2 +O(|x|4)(55)

in dimension 24.
Alas, the higher coefficients exhibited no similar structure, preventing any effort to

guess the function by its Taylor series. These conjectures would remain mysterious until the
magic functions were constructed; moreover, they proved useful in helping to construct the
magic functions in the first place.

4. Viazovska’s Argument for Dimension 8

4.1. Overview of the Construction. We base this section in part on the excellent outline
[4] of Viazovska’s argument. We will try to give what one might call a “creation myth” for
Viazovska’s argument, explaining how one might, with some understanding of modular forms
and their transformation behavior, come to construct the magic functions along the same
lines as Viazovska.

We have seen from above that that finding an optimal function is finding a radial

Schwartz function f such that f and f̂ have certain specified roots. The magnitudes of the
vectors in E8 are, as we have seen, the set {

√
2k : k = 1, 2, . . . }. Thus f must a simple root

at
√

2 and double roots at each
√

2k, k ≥ 2; and f̂ must have double roots at each
√

2k,
k ≥ 1. As we have pointed out, we do not expect that finding such an f will be particularly
easy.

We also have the Cohn-Miller conjectures:

f8(x) = 1− 27

10
|x|2 +O(|x|4)

f̂8(x) = 1− 3

2
|x|2 +O(|x|4)

We shall begin by making a simplifying observation. We are controlling only the roots

of f and f̂ ; we know, moreover, that f should be a radial function, which implies that
̂̂
f = f

(recall that generally
̂̂
f = f(−x)). A natural thing to try to do, then, is to break up f

into eigenfunctions of the Fourier transform. In fact, making this assumption loses us no
information, because we can always split a radial Schwartz function up into a +1 and −1
eigenfunction, just as every function can be split up into a sum of even and odd functions:

f+ :=
f + f̂

2
and f− :=

f − f̂
2

,

and indeed f = f+ + f−. Note that f̂+ = f̂+f
2

= f+ and f̂− = f̂−f
2

= −f−, so that f+ and f−
are indeed +1 and −1 eigenfunctions. Note that:
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(56) f+ = 1− 21

10
|x|2 +O(|x|4)

(57) f− = −3

5
|x|2 +O(|x|4)

We might hope that we can force f+ and f− to have real roots at exactly {
√

2k : k = 1, 2, . . .};
of course, we will need to show that no other real roots are introduced when we sum the two
functions.

It is through the connection between modular forms and Fourier eigenfunctions that
modular forms will become useful in our project to construct the magic function. However,
Viazovska’s actual construction – for both the +1 and the −1 eigenfunctions – is substantially
trickier than the straightforward construction of taking the Laplace transform of a modular
form of weight 2− 8/2 = −2. For, indeed, as shown above, if we let ψ be a modular form of
weight −2, then its Laplace transform

f(r) :=

∫ ∞
0

ψ(it)e−tπr
2

dt

satisfies f̂ = i−2f = −f . And, indeed, we can use a modular form ψ with an associated
multiplier system (modular on some congruence subgroup) to obtain a +1 eigenfunction. It
is thus natural to try to construct each eigenfunction as a Laplace transform of a modular
form of some kind.

But this alone will not solve the problem of the magic function: there is no way

to guarantee that the construction gives us the desired roots for f (and f̂). Viazovska’s
ingenious idea was simply to force f to have the desired roots by multiplying the above
Laplace transform by a factor of sin2(πr2/2):

(58) f(r) := sin2(πr2/2)

∫ ∞
0

g(it)e−tπr
2

dt.

Now, sin2(πr2/2) has roots of multiplicity 2 at all points r = ±
√

2k, k ∈ Z, k > 0, and
a root of multiplicity 4 at r = 0. Note that this is a little bit of overkill: we want roots of
multiplicity merely 1 at ±

√
2, and no vanishing at all at r = 0. So we will need to make sure

that integral gives us a pole of order 4 at r = 0, and poles of order 1 at r = ±
√

2. Moreover,
we shall want it to have no poles anywhere else.

Let us briefly take note of what will be required of g to obtain such poles. By elementary
calculus,30

(59)

∫ ∞
0

te−πr
2tdt =

1

π2r4

30The basic principles governing these formulae are that applying the Laplace transform to xa (for a > 0)
gives 1/xa+1 times a constant, and that if F (x) has a Laplace transform f(r), then eaxF (x) has a Laplace
transform f(r − a).
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and

(60)

∫ ∞
0

e2πte−πr
2tdt =

1

π(r2 − 2)
.

If we consider this g(t) to be something like a modular form, then we expect g(t) to
have a q-expansion. Then (60) suggests that g(it) should have a q−1 term. On the other
hand, (59) suggests that expanding g(it) should have a “naked” t term (a term consisting
of a constant times t with no factors of q), which suggests that g(it) might expand into a
product of polynomials in t and q series. Note that the t-term, which as we see from (59)
gives rise to a 1/r4-term when we take the Laplace transform, controls the value of of f at 0
(once we multiply by sin2(πr2/2), which vanishes to order 4 at 0). By (56) this naked t-term
must only come from the +1 eigenfunction.

4.2. Constructing the +1 Eigenfunction. Let us now consider the +1 eigenfunction case.
Following Viazovska’s notation we let x ∈ R8, and let |x| = r. Then let a(x) be the +1
eigenfunction, which we shall construct as:

(61) a(r) := sin2(πr2/2)

∫ ∞
0

g(it)e−tπr
2

dt.

We shall now see what sorts of conditions on g are suggested by the ansatz f̂ = f .
Note that the factor of sin2 now messes up the eigenfunction property of the Laplace

transform. However, there is hope, as the function sin2(πr2/2) has an exponential expansion
via Euler’s formula:

sin2(πr2/2) = −1

4

(
eπir

2 − 2 + e−πir
2
)
.

This lets us do some contour shifting:

a(r) = sin2(πr2/2)

∫ ∞
0

g(it)e−tπr
2

dt

= −1

4

∫ ∞
0

(
g(it)e−(t+i)πr2 − 2g(it)e−tπr

2

+ g(it)e−(t−i)πr2
)
dt(62)

= −1

4

(∫ ∞+i

i

g(it+ 1)e−tπr
2

dt− 2

∫ ∞
0

g(it)e−tπr
2

dt+

∫ ∞−i
−i

g(it− 1)e−tπr
2

dt

)
=
i

4

(∫ −1+i∞

−1

g(t+ 1)eiπr
2tdt− 2

∫ i∞

0

g(t)eiπr
2tdt+

∫ 1+i∞

1

g(t− 1)eiπr
2tdt

)
(63)

where we integrate vertically along the imaginary axis in the last integral. Firstly, note that
g itself cannot be a modular form or else the integrand would be identically 0. So we shall
have to be more clever to find g.
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Figure 4. The path of integration seen in (63).

Now, let us apply the Fourier transform to this integral. Assuming g is sufficiently
well-behaved that we can swap the order of integration, we can use the Fourier transform of
an 8-dimensional Gaussian:

F
(
eπi|x|

2t
)

(y) = t−4eπi|y|
2(− 1

t ).

This will replace t by −1/t and multiply the whole expression by t−4 in each integrand;
we also, for convenience, bring the factor of i/4 to the other side. We have:

−4i â(r) =

∫ −1+i∞

−1

g(t+ 1)t−4eiπr
2(−1/t)dt− 2

∫ i∞

0

g(t)t−4eiπr
2(−1/t)dt

+

∫ 1+i∞

1

g(t− 1)t−4eiπr
2(−1/t)dt

Substituting t 7→ −1/t, dt 7→ t−2dt we obtain:

−4i â(r) =

∫
C

g

(
−1

t
+ 1

)
t2eiπr

2tdt− 2

∫ 0

i∞
g

(
−1

t

)
t2eiπr

2tdt(64)

+

∫
D

g

(
−1

t
− 1

)
t2eiπr

2tdt.

where C and D are the transformed contours as depicted below.
Before we proceed let us note some of important aspects of the problem that we have

encountered. Firstly, we see that if g is to have some kind of modular properties, there will
be no escaping the substitutions t 7→ t+1 and t 7→ −1/t – the first coming from the contours
given by the sin2 factors and the second coming from applying the Fourier transform to a
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Figure 5. The path of integration seen in (64).

Laplace transform. These, as was shown above, generate all of Γ(1), so we should suspect
that g is modular in some way on the full modular group Γ(1).

Next, we might hope that by insisting that g have some modular properties, we can
make this integral manifestly equal to the integral in (63). But it is far from clear how to do
so, because circles C and D do not appear as contours in (63).

A more natural way to proceed would be to deform the contours found in (63) from the
outset, so that the new contours are invariant under t 7→ −1/t. To this end, the imaginary
line iy is already invariant under the transformation t 7→ −1/t. Thus we can keep the iy
contour as it is. The most natural candidate for the −1 + it contour is to integrate along the
boundary of the complex unit circle from −1 to i, and then from i to i∞ along the imaginary
axis; likewise, for the contour 1 + iy, we first integrate along the unit circle from 1 to i and
then from i to i∞ along the imaginary axis. The two quadrants of the unit circle in H are
exchanged by the map t 7→ −1/t, and the two halves of the imaginary axis (those iy with
y > 1 and iy with y < 1) are exchanged by the transformation t 7→ −1/t.

For the deformed path to not change the value of the integral, it is important that
there be no poles of g anywhere inside the region lying above the unit circle and two vertical
lines of real part −1 and +1. If we imagine that g is modular in some way under the action of
Γ(1), then g should have no poles anywhere in H as the this region contains the fundamental
domain of Γ(1).

Let us now write out the integral in (63) with these new contours:

−4ia(r) =

∫ i

−1

g(t+ 1)eiπr
2tdt+

∫ i∞

i

g(t+ 1)eiπr
2tdt

+

∫ i

1

g(t− 1)eiπr
2tdt+

∫ i∞

i

g(t− 1)eiπr
2tdt

− 2

∫ i∞

0

g(t)eiπr
2tdt,
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Figure 6. The deformed path of integration of (63) invariant under t 7→ −1/t .

or, grouping by contours:

−4ia(r) =

∫ i∞

i

(g(t+ 1)− 2g(t) + g(t− 1)) eiπr
2tdt(65)

+

∫ 0

i

2g(t)eiπr
2tdt

+

∫ i

−1

g(t+ 1)eiπr
2tdt

+

∫ i

1

g(t− 1)eiπr
2tdt.

Now, let us apply the Fourier transform as above:

−4i â(r) =

∫ i∞

i

(g (t+ 1)− 2g (t) + g (t− 1)) t−4eiπr
2(− 1

t )dt

+

∫ 0

i

2g(t)t−4eiπr
2(− 1

t )dt

+

∫ i

−1

g(t+ 1)t−4eiπr
2(− 1

t )dt

+

∫ i

1

g(t− 1)t−4eiπr
2(− 1

t )dt.

And, substituting t 7→ −1/t (as before, dt 7→ t−2dt):
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−4i â(r) =

∫ 0

i

(
g

(
−1

t
+ 1

)
− 2g

(
−1

t

)
+ g

(
−1

t
− 1

))
t2eiπr

2tdt(66)

+

∫ i∞

i

2g

(
−1

t

)
t2eiπr

2tdt

+

∫ i

1

g

(
−1

t
+ 1

)
t2eiπr

2tdt

+

∫ i

−1

g

(
−1

t
− 1

)
t2eiπr

2tdt.

Equating the integrands of (65) and (66) over the common contours gives us the fol-
lowing four functional equations for g:

(67) g(t+ 1)− 2g(t) + g(t− 1) = 2g

(
−1

t

)
t2,

(68) 2g(t) =

(
g

(
−1

t
+ 1

)
− 2g

(
−1

t

)
+ g

(
−1

t
− 1

))
t2,

(69) g(t+ 1) = g

(
−1

t
− 1

)
t2,

(70) g(t− 1) = g

(
−1

t
+ 1

)
t2.

We can see at once that (67) and (68) are equivalent, as are (69) and (70); both via
the substitution t 7→ −1/t. Thus, we really have only two independent functional equations
which we can say are given by (67) and (69). Let us examine (69), as it is the simpler of the
two and more closely resembles the identity (12) for a garden-variety modular form.

Let us try to isolate g(−1/t). Say we let t + 1 = −1/u. Then t = −1/u − 1, whence
−1/t− 1 = −1/(u+ 1). We have:

g

(
−1

u

)
= g

(
− 1

u+ 1

)(
−1

u
− 1

)2

,

or, elegantly:

(71) g

(
−1

u

)
u2 = g

(
− 1

u+ 1

)
(u+ 1)2.

Formula (71) is truly remarkable: it says that the function φ(t) := t2g(−1/t) is periodic.
So in fact (69), despite superficially resembling (12), is actually an analogue of (11), following
from the periodicity of the function φ.

55



Modular Magic Aaron Slipper

We see, therefore, that φ should be a function with a q-expansion. We should therefore
hope to build φ out of modular forms. Note that g(t) = φ(−1/t)t2; this is the function whose
Laplace transform we are taking to get the +1 eigenfunction.

Let us now turn to our other, more complicated, functional equation, (67). The im-
portant thing to note here is that the LHS is actually a second finite difference of g(t); we
now know that the RHS is equal to 2φ(t), where φ is periodic. Thus (67) says that φ satisfies
not the modular transformation property – that is, φ(−1/t)t2 = φ(t) – but“second finite
difference modularity”: 1

2
∆(2)[φ(−1/t)t2] = φ(t). 31

An ingenious idea of Viazovska’s was to introduce the non-modular E2 into the mix.
Let us examine why this is a reasonable idea. Let us imagine that φ(t) = Q(E4, E6), where Q
is some rational function. Then t2φ(−1/t) is given by a sum of products of series in t times
series in q = e2πit. As discussed above, we want a naked t-term to show up in this expansion
(in order to give a pole of order 4 when we take the Laplace transform; moreover, we saw
that this naked t-term must come from the +1-eigenfunction). As all products f = Ep

4E
q
6

satisfy f(−1/t) = tkf(t) for some even power k (in fact k = 4p + 6q), we cannot expect
to obtain a naked t1-term from this method. However, E2(−1/t) does gives us a t term:
E2(−1/t) = t2E2(t)− (6i/π)t.

Let us imagine now that we take the second difference of φ(−1/t)t2, where φ is some
rational function of E2, E4, and E6. When we expand Q(E2(−1/t), E4(−1/t), E6(−1/t))t2,
we shall obtain a sum of series in t times rational functions of E2, E4, and E6. Applying a
second finite difference to an expression of the form tk ·P (E2(t), E4(t), E6(t)) will simply yield
∆(2)[tk] · P (E2(t), E4(t), E6(t)), by the periodicity of E2, E4 and E6. 32 Note that ∆(2)[tk] is
a polynomial of degree k − 2; in particular, it equals 2 for t2, and 0 for both t and 1.

Thus, if we want ∆(2)[φ(−1/t)t2] = 2φ(t), the latter series contains no (nonzero) powers
of t in its expansion, and so we should be able to expand:

(72) φ(−1/t)t2 = t2φ(t) + tψ1(t) + ψ2(t)

where ψ1 and ψ2 are two functions with q expansions (we can there assume the E2, E4,
and E6 without any t terms). Anything satisfying (72) then necessarily satisfies the relation
∆(2)[φ(−1/t)t2] = 2φ(t).

What does (72) tell us about φ as a rational function of E2, E4, and E6? The first
thing we should try to ascertain is the “weight” of φ. 33 But how can we get at the weight of
a quasimodular form via its transformation behavior? We want to be able to think of E2(t)
as being of “weight 2”, and a general monomial Ek2

2 E
k4
4 E

k6
6 as being of weight 2k2 +4k4 +6k6

(i.e., the weight of a product should be the sum of the weights, like it already is for modular
forms). Now, E2(−1/t) = t2E2(t) + (6i/π)t, and if we view this expression as a polynomial

31Here ∆(2) refers to the second finite difference operation f(z) 7→ f(z + 1) − 2f(z) + f(z − 1), not to the
discriminant function’s square.
32More generally, if u is a periodic function, and v is any function, then any finite difference operator ∆k

satisfies ∆k[uv] = u∆k[v]. More technically the finite difference operators commute with translation and
thus act by endomorphisms on the module of functions over the ring of periodic functions.
33[41], (section 5.3) gives a detailed discussion of quasimodular forms in general, though he does not define
weight like we do. We, however, do not need the full machinery of quasimodular forms in their generality.
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in t only, then the highest power of t appearing in the expansion is t2. We can think of
“the highest power of t appearing when we substitute t 7→ −1/t and expand the result into
quasimodular forms and powers of t” as a kind of definition of the weight. This agrees with
the desideratum that weight of a product should be the sum of the corresponding weights:
say we have some monomial f(t) = Ek2

2 E
k4
4 E

k6
6 . Then we have:

f(−1/t) =

(
E2(t)t2 − 6i

π
t

)k2 (
E4(t)t4

)k4 (E6(t)t6
)k6

= t2k2+4k4+6k6Ek2
2 E

k4
4 E

k6
6 + · · ·

where the remaining terms contain strictly smaller powers of t. The same carries over to
negative weights, that is, rational functions P (E2, E4, E6)/Q(E4, E6), where P and Q are
both of a well-defined weight – we can simply take the difference between the weight of the
numerator and the weight of the denominator.34

Now, (72) shows that

(73) φ(−1/t) = φ(t) + t−1ψ1(t) + t−2ψ2(t)

so we see that φ should be of weight 0. Moreover, φ can have no poles in H, so the natural
thing to do is to divide something of weight 12 by ∆, which, as we have discussed, does not
vanish in H. We therefore write:

φ(t) =
P (E2, E4, E6)

∆

where ∆ is the modular discriminant 1
1728

(E3
4 − E2

6) and P (E2, E4, E6) is a quasimodular
form of weight 12. Thus P is a linear combination of the monomials E3

4 , E2
6 , E2E4E6, E2

2E
2
4 .

That is

(74) φ(t) =
(AE3

4 +BE2
6) + (CE4E6)E2 + (DE2

4)E2
2

∆

Then we have:

(75) φ(−1/t) =
(AE3

4 +BE2
6) t12 + (CE4E6t

10)
(
E2t

2 − 6i
π
t
)

+ (DE2
4t

8)
(
E2t

2 − 6i
π
t
)2

t12∆

Thus, expanding (75), isolating the t−1 and t−2 terms and comparing to (73), we see
that:

34When the denominator is infected by E2, the transformation t 7→ −1/t does not merely scale the denomi-
nator but adds an additional term. Sums in a denominator do not distribute like sums in a numerator; the
appearance of an additional term makes the above definition of weight unworkable.
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(76) ψ1(t) =
−6i

π
CE4E6 − 12i

π
DE2

4E2

∆

(77) ψ2(t) =
− 36
π2DE

2
4

∆

Now we can attempt to ascertain see what these constants ought to be. Firstly, note
that:

sin2(πr2/2) =
π2r4

4
− π4r8

48
+
π6r12

1440
− π8r16

80640
+O(r20).

We also have that:

sin2(πr2/2)

∫ ∞
0

φ(i/t)(it)2e−tπr
2

dt = 1− 21

10
r2 + · · ·

from which we see that:

(78)

∫ ∞
0

φ(i/t)(it)2e−tπr
2

dt =
4

π2r4
− 42

5π2r2
+ · · · .

Now, substituting it into (72) gives us:

(79) −t2φ(i/t) = −t2φ(it) + itψ1(it) + ψ2(it),

which yields

(80) a(r) = sin2(πr2/2)

∫ ∞
0

(
−t2φ(it) + itψ1(it) + ψ2(it)

)
e−πr

2tdt.

The naked t term must come from the term (it · Const) in itψ1(it). We can thus see, looking
once more at (59), that the constant term of ψ1(t) should be −4i to yield the first term on
the LHS of (78).

Now, let us expand (76). We have:

ψ1(t) =
−6i

π
C(1 + 240q + · · · )(1− 504q + · · · )(q−1 + 24 + 324q + · · · )

− 12i

π
·D(1 + 480q + · · · )(1− 24q + · · · )(q−1 + 24 + 324q + · · · )

Here we have here two unknowns, C and D. As we have already noted, the constant term
of the expansion must be −4i, which gives us one constraint. But, in fact, we also know
that there can be no q−1 term in the q expansion of ψ1: a q−1 term in ψ2 would include an
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integral of the form
∫∞

0
te2πte−πr

2tdt = 1
π2(r2−2)2

, which would eliminate the desired zeros at

r = ±
√

2. Hence we must have the two q−1-terms cancel; i.e., C = −2D. Thus, we have two
constraints, and we can solve for C and D:

C = − π

1080
, D =

π

2160
.

However, we also have a 1/r2-term in (78), which comes from the Cohn-Miller con-
jecture for the quadratic term of the Taylor expansion of the magic function f . 35 Recall
that: ∫ ∞

0

e−πr
2tdt =

1

πr2

which means that the second term on the LHS of (78) must come from the constant term of
φ(i/t)(it)2. This constant term must be contributed by ψ2(it), and must be equal to −42

5π
.

Expansion of (77) yields:

ψ2 = −36

π2
· π

2160
(1 + 480q + · · · )(q−1 + 24 + 324q + · · · )

= −36

π2
· π

2160
(q−1 + 504 + · · · )

= − 1

60π
q−1 − 42

5π
+ · · ·

Miraculously, this gives us precisely the constant term predicted by Cohn-Miller! This is a
sure sign that our method is on the right track.

Let us now attempt to solve for A and B. The integral (80) cannot contain any t2e2πt

(coming from a q−1 in the q-expansion of φ(it) in −t2φ(it)) term because∫ ∞
0

−t2e2πte−πr
2tdt = − 2

π3(r2 − 2)3
.

which, as before, would give us an unwanted pole at r = ±
√

2. Similarly, we want φ(it) to
not posses a constant term in its q-expansion, which will gives us, from the −t2φ(it) term, a
summand of the form: ∫ ∞

0

−t2e−πr2tdt = − 2

π3r6
.

35So far in our constructions we have not assumed this conjecture – the constant term of 1 in the Taylor
expansion a(r) follows directly from the version of the linear programming bound in which we normalize our
magic function and its Fourier transform so that both are equal to 1 at r = 0. The conjecture only gives us
novel information in the quadratic term of the Taylor expansion.
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which has a pole of too high an order at r = 0. Thus φ must have no q−1 term, nor any
constant q-expansion term. These two constraints, given our knowledge of C and D, are
sufficient to solve for A and B.

Indeed, expanding (74), we see that:

φ(t) =A(1 + 720q + · · · )(q−1 + 24 + 324q + · · · )
+B(1− 1008q + · · · )(q−1 + 24 + 324q + · · · )

− π

1080
(1− 24q + · · · )(1 + 240q + · · · )(1− 504q + · · · )(q−1 + 24 + 324q + · · · )

+
π

2160
(1 + 480q + · · · )(1− 48q + · · · )(q−1 + 24 + 324q + · · · )

which simplifies to A+B − π/2160 = 0; 744A− 984B − 41π/90 = 0. The solutions of these
are

A = 0, B =
π

2160
.

Putting this all together, and factoring out π/2160, we get:

(81) φ(t) =
π

2160
· (E2E4 − E6)2

∆

We shall have that a(r) := sin2(πr2/2)
∫∞

0
φ(i/t)(it)2e−πr

2tdt, with φ as defined by (81), gives
us the +1 eigenfunction.36

4.3. Constructing The −1 Eigenfunction. We now wish to construct the−1-eigenfunction.
We want a function of the form:

b(x) = sin2(πr2/2)

∫ ∞
0

g(it)e−tπr
2

dt,

that satisfies F(b)(x) = −b(x). We can use exactly the same contour shifting technique
that we used for the +1-eigenfunction to get some functional equations for our function g(t).
Proceeding exactly as we did in (62)-(66), we can force our function b to be a −1 eigenfunction
by making g satisfy:

(82) g(t+ 1)− 2g(t) + g(t− 1) = −2g

(
−1

t

)
t2

36This is not the same form in which Viazovska writes the +1 eigenfunction. She lets ϕ−4(z) = E2
4/∆,

ϕ−2(z) = −E4E6/∆, and then lets φ0 := ϕ−4E
2
2 + 2ϕ−2E2 + j − 1728. Recalling that j = E3

4/∆, this is
readily seen to be equivalent up to a constant scaling factor. Viazovska scales her φ0 so that φ0 = q−1 + · · · ;
we scale our φ+ so that sin2 times the Laplace transform is exactly the +1 eigenfunction.
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(83) 2g(t) = −
(
g

(
−1

t
+ 1

)
− 2g

(
−1

t

)
+ g

(
−1

t
− 1

))
t2

(84) g(t+ 1) = −g
(
−1

t
− 1

)
t2

(85) g(t− 1) = −g
(
−1

t
+ 1

)
t2.

We can see that (82) and (83) are equivalent, as are (84) and (85) – both via the
transformation t 7→ −1/t.

Proceeding as before, we look at (84) and isolate an expression for g(−1/t). Sending
t 7→ −1/t− 1, we have:

g

(
−1

t

)
t2 = −g

(
− 1

t+ 1

)
(t+ 1)2

which shows us that the function φ(t) := g(−1/t)t2 satisfies:

(86) φ(t+ 1) = −φ(t).

Following the +1-eigenfunction case, we should expect φ to be a modular – or quasi-
modular – form on some congruence subgroup of level 2. As shifting by 1 introduces a factor
of −1, we can expect that φ has a Fourier series in q1/2, containing only odd powers of q1/2.

Now, let us consider the implications of (82). We note that it is equivalent to

∆(2)[φ(−1/t)t2] = −2φ(t)

where, as above, ∆(2) is the second finite difference operator. Substituting t 7→ t+ 1 in (82),
adding it back to (82), and applying (86), we get g(t + 2) − g(t + 1) − g(t) + g(t − 1) = 0.
Thus g(t + 2) − g(t) = g(t + 1) − g(t − 1) is periodic (and therefore has a q-series), and
g(t)− g(t− 1) = g(t+ 2)− g(t+ 1) is periodic with period 2 (and therefore has a q1/2-series).
To satisfy the difference equations, we see that we should let

φ(−1/t)t2 = g(t) = −φ(t)/2 + ψ1(t) + tψ2(t),

where ψ1 and ψ2 are both quasimodular forms on Γ(2) with period 1. This implies that
the “weight” of the quasimodular form must be 1, which is impossible, as the weights of
quasimodular forms on Γ(2) are all even.37 Thus ψ2(t) = 0. We see, therefore, that both

37See Zagier’s treatment of quasimodular forms: section 5.3. of [41]; however, note that Zagier does not
adopt our ad-hoc definition of weight. It turns out that in general, the ring of quasimodular forms (which we
have not defined here) is generated by a single non-modular quasimodular form of weight 2, and the standard
modular forms. In the case of Γ(1), this means that the ring of quasimodular forms is precisely C[E2, E4, E6].
In this case, note that −I ∈ Γ(2), whence all weights of modular forms and quasimodular forms are even.
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φ(t) and g(t) = φ(−1/t)t2 should have q1/2-expansions; we can expect that φ to not just be
quasimodular, but actually modular and of weight −2.

Note that we have, in some ways, a simpler situation than that of the +1-eigenfunction:
we do not need to worry about quasimodularity. The function whose Laplace transform we
are taking, g(t), is actually equal to a (negative weight) modular form.

Returning to the above integral, we see, by setting g(t − 1) = g(t + 1) in (82), that
−2g(t) + 2g(t− 1) = −2g(−1/t)t2, or simply:

(87) g(−1/t)t2 + g(t− 1) = g(t).

Viazovska writes the three summands of (87) as ψS = g(−1/t)t2 (which we have also called
φ(t)), ψT = g(t − 1) (which is also g(t + 1) by the 2-periodicity of g), and ψI = g(t),
respectively (S and T refer to the generators of Γ(1) described above; I corresponds to the
identity).

To get a modular form on Γ(2) of weight −2, we will need to write g as a quotient
of two modular forms of positive weight. What should the denominator be? The natural
candidate, following the +1 case, is once again ∆. 38

The ring of modular forms on Γ(2) is generated by θ4
00 and θ4

01, each of which is of
weight 2. We will want:

g(t) =
P (θ4

00, θ
4
01)

∆

where P is homogeneous of degree 5 (so that the numerator has weight 10, making g have
weight −2 as desired). Now, we have a 6-dimensional space of modular forms of weight 10,
generated by θ20−4i

00 θ4i
01. Thus we know that:

g(t) =
Aθ20

00 +Bθ16
00θ

4
01 + Cθ12

00θ
8
01 +Dθ8

00θ
12
01 + Eθ4

00θ
16
01 + Fθ20

01

∆

for some still-to-be-determined constants A, . . . , F .
Now, (86) implies that g(−1/t)t2 necessarily expands into a series containing only odd

powers of q1/2. Substituting −1/t for t and multiplying by t2 is equivalent to replacing θ01

with θ10 and multiplying by an overall factor of −1 (since each term in the numerator is of
degree 5 in θ4

00 and θ2
01).

φ(t) = g(−1/t)t2 = −Aθ
20
00 +Bθ16

00θ
4
10 + Cθ12

00θ
8
10 +Dθ8

00θ
12
10 + Eθ4

00θ
16
10 + Fθ20

10

∆

Now, shifting the parameter t by by 1 (i.e., t 7→ t+ 1), we see that:

φ(t+ 1) =
−Aθ20

01 +Bθ16
01θ

4
10 − Cθ12

01θ
8
10 +Dθ8

01θ
12
10 − Eθ4

01θ
16
10 + Fθ20

10

∆

38Recall that ∆ is equal to the product 1
256θ

8
00θ

8
10θ

8
01.
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To compare φ(t + 1) and φ(t), we should get rid of all θ01-terms of φ(t + 1). By the
Jacobi identity, we have θ4

01 = θ4
00−θ4

10. Equating terms in this expansion in accordance with
(86) we get:

φ(t+ 1) =
1

∆

(
− A

(
θ4

00 − θ4
10

)5
+B

(
θ4

00 − θ4
10

)4
θ4

10 − C
(
θ4

00 − θ4
10

)3
θ8

10

+D
(
θ4

00 − θ4
10

)2
θ12

10 − E
(
θ4

00 − θ4
10

)
θ16

10 + Fθ20
10

)
=

1

∆

(
(−A)θ20

00 + (5A+B)θ16
00θ

4
10 + (−10A− 4B − C)θ12

00θ
8
10

+ (10A+ 6B + 3C +D)θ8
00θ

12
10 + (−5A− 4B − 3C − 2D − E)θ4

00θ
16
01

+ (A+B + C +D + E + F )θ20
10

)
which gives us:

A = − A
B = 5A+B

C = − 10A− 4B − C
D = 10A+ 6B + 3C +D

E = − 5A− 4B − 3C − 2D − E
F =A+B + C +D + E + F

which gives us A = 0, C = −2B, E = B −D, with B, D and F freely specifiable.
Now we can consider the implications of (87). We note that:

g(−1/t)t2 = φ(t) =− 1

∆

(
Aθ20

00 +Bθ16
00

(
θ4

00 − θ4
01

)
+ Cθ12

00

(
θ4

00 − θ4
01

)2

+Dθ8
00

(
θ4

00 − θ4
01

)3
+ Eθ4

00

(
θ4

00 − θ4
01

)4
+ F

(
θ4

00 − θ4
01

)5
)

=
1

∆

(
(−A−B − C −D − E − F )θ20

00

+ (B + 2C + 3D + 4E + 5F )θ16
00θ

4
01 + (−C − 3D − 6E − 10E)θ12

00θ
8
01

+ (D + 4E + 10F )θ8
00θ

12
01 + (−E − 5F )θ4

00θ
16
01 + (F )θ20

01

)
and that:

g(t− 1) =
Fθ20

00 + Eθ16
00θ

4
01 +Dθ12

00θ
8
01 + Cθ8

00θ
12
01 +Bθ4

00θ
16
01 + Aθ20

01

∆
.

This leads us to the system of linear equations39:

39The parentheses are to show which terms come from each part of the sum in (87).
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A = (−A−B − C −D − E − F ) + (F )

B = (B + 2C + 3D + 4E + 5F ) + (E)

C = (−C − 3D − 6E − 10F ) + (D)

D = (D + 4E + 10F ) + (C)

E = (−E − 5F ) + (B)

F = (F ) + (A).

which gives, in combination with the previous identities, only one extra constraint: B =
2D − 5F . 40 Thus g is of the form:

(88) g(t) =
(2D − 5F )θ16

00θ
4
01 + (−4D + 10F )θ12

00θ
8
01 +Dθ8

00θ
12
01 + (D − 5F )θ4

00θ
16
01 + Fθ20

01

∆
.

Now, observe that ∫ ∞
0

eπte−πr
2tdt =

1

π(r2 − 1)

Thus, if g(it) contains an eπt term (which would correspond to a q1/2 from the numerator
multiplying the q−1 term coming from 1/∆), then b(r) will diverge at r = ±1. This is not
behavior we want; so we see that the numerator has no q1/2 term. Recall that:

θ16
00θ

4
01 =1 + 24q1/2 + 248q + 1376q3/2 + · · ·

θ12
00θ

8
01 =1 + 8q1/2 − 8q − 224q3/2 + · · ·

θ8
00θ

12
01 =1− 8q1/2 − 8q + 224q3/2 + · · ·

θ4
00θ

16
01 =1− 24q1/2 + 248q − 1376q3/2 + · · ·
θ20

01 =1− 40q1/2 + 760q − 9120q3/2 · · ·

Setting the coefficient of q1/2 equal to 0 in (88) gives us:

0 = 24(2D − 5F ) + 8(−4D + 10F )− 8(D)− 24(D − 5F )− 40F

= 40F − 16D

= 8(5F − 2D).

We see that the coefficients of both θ16
00θ

4
01 and θ12

00θ
8
01 must vanish. Letting K = F/2 (so that

2K = F and 5K = D), we have:

40It is noteworthy how much redundancy exists in these two sets of constraints. One might worry, given that
there appear to be 12 such constraints, and only 6 variables, that the system is overconstrained; interestingly,
there are only four independent constraints imposed on the variables A, . . . , F .
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(89) g(t) = K
5θ8

00θ
12
01 − 5θ4

00θ
16
01 + 2θ20

01

∆
.

Now we can apply the Cohn-Miller conjectures to determine K. We recall that, since
sin2(πr2/2) = (π2/4)r4 +O(r8), the quadratic term of the Taylor expansion for

(90) b(r) = sin2(πr2/2)

∫ ∞
0

g(it)e−πr
2tdt

must come from a 1/r2 term in the integral. This is given by the Laplace transform of
constant term of the Fourier expansion. Note that:

g(t) =K
[
5(1− 8q1/2 − 8q + 224q3/2 + · · · )− 5(1− 24q1/2 + 248q − 1376q3/2 + · · · ) + 2(1− 40q1/2 + 760q − 9120q3/2 + · · · )

]
·[

q−1 + 24 + 324q + · · ·
]

=K
(
2q−1 + 288− 10240q1/2 + · · ·

)
,

so that if we want the quadratic term to be −3/5 as in the Cohn-Miller conjectures, we need

K = − 1

120π
.

Thus we let

(91) g(t) = − 1

120π
· 5θ8

00θ
12
01 − 5θ4

00θ
16
01 + 2θ20

01

∆
.

which, we expect, will give us the −1 eigenfunction b(r) via (90).

4.4. The Rigorous Argument. Our construction of a(r) and b(r) almost provides us with
a full proof that a(r) + b(r) is the sought-after magic function. There are some details,
however, which we need to address. The biggest, of course, is that we need to verify that
adding a(r) and b(r) introduces no new sign changes. We will show this in the subsequent
section. However, we must also check that the analysis we glossed over in attempting to
construct these eigenfunctions is justified. In particular, we must verify the legitimacy of our
contour shifting argument, we must make sure that we can swap the Fourier and Laplace
transform integrals, and we need to check that our eigenfunctions behave correctly at r = 0
and r = ±

√
2. To make certain that we have all the details in place, we shall essentially start

afresh, assuming that our eigenfunctions have the form we discussed above.
This section will very much resemble Viazovska’s actual paper [38], and in fact, will be

logically self-contained. But to demystify the deus ex machina effect of Viazovska’s argument,
we felt it necessary to give a rather detailed explanation of how these eigenfunctions might
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be constructed so as to make them satisfy the desired properties before we gave the rigorous
argument.

We define:

φ+(t) =
π

2160
· (E2E4 − E6)2

∆

This is a holomorphic function on the upper half plane, as ∆ never vanishes. It therefore
has a convergent Fourier expansion:41

φ+ =π
(
240q + 14400q2 + 403200q3 + 7267200q4 + · · ·

)
(92)

=240π
(
q + 60q2 + 1680q3 + 30280q4 + · · ·

)
.

We also see from applying the modular transformation properties of E2, E4, and E6,
that

(93) φ+(−1/t)t2 =
π

2160
· (E2E4 − E6)2

∆
t2 +

i

180
· E4E6 − E2

4E2

∆
t− 1

60π
· E

2
4

∆

We call this function g+(t). We note that this automatically satisfies

(94) g+(t+ 1)− 2g+(t) + g+(t− 1) = 2φ+(t)

since the coefficients of the powers of t are each periodic, and the second differences of 1, t,
and t2 are 0, 0, and 2, respectively. Note that the coefficients of t2, t, and the constant term
of (93) are each holomorphic quasimodular forms on H; each is periodic. (We shall call them,
as before, ψ1(t) and ψ2(t) respectively.) As with φ, we can expand ψ1 and ψ2 into convergent
Fourier Series:

g+(t) =φ(t)t2 + ψ1(t)t+ ψ2(t)

=π
(
240q + 14400q2 + 403200q3 + 7267200q4 + · · ·

)
t2

+
(
−4i− 1128iq − 52320iq2 − · · ·

)
t(95)

+
1

π

(
−q
−1

60
− 42

5
− 6147q

5
− 134752q2

3
− · · ·

)
41This follows from elementary complex analysis. If f is a holomorphic function on H satisfying f(z + 1) =
f(z), then for nonzero z0 ∈ D, the unit disk, we can take a branch of log(z) which is holomorphic on a
sufficiently small neighborhood U of z0. Note that, independent of the branch of log we choose, 1

2πi log(z) ∈ H
for all z ∈ U . Thus we can take the composition f

(
1

2πi log(z)
)

:= g(z), which is also holomorphic; moreover,
it is independent of choice of branch of log by the periodicity of f . As g is holomorphic on D\{0}, it expands
into a convergent Laurent series about 0; that is, g(z) =

∑∞
n=−∞ anz

n for all z ∈ D \ {0}. We see that∑∞
n=−∞ ane

2πinz = g
(
e2πiz

)
= f(z), which gives a representation of f as a convergent q-series.
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The analysis that we will perform will require us to bound the Fourier coefficients of the
quasimodular form φ+. Viavozska used the rather precise estimates for Fourier coefficients
of negative weight modular forms that arise from the Hardy-Ramanujan circle method [33];
such precision is not actually required for our purposes.

The first thing that we notice is that (92) has only nonnegative Fourier coefficients;
moreover, each q series multiplying a power of t in (95) has a consistent sign. This in itself
is an interesting fact. We record it as:

Proposition 4.4.1. The coefficients of the q-expansion of the function φ+(t) =
π

2160
(E2E4−E6)2

∆
are all non-negative. Furthermore, the q-expansion coefficients of iψ1(t) and

−ψ2(t) are all non-negative.

Proof. The product representation for 1
∆

= 1
q
∏∞
n=1(1−qn)24

yields

q−1(1 + q + q2 + · · · )24(1 + q2 + q4 + · · · )24 · · ·

which has an absolutely convergent logarithm for all |q| < 1, with each factor converging
absolutely for |q| < 1. The expansion of this product therefore equals the q-series of ∆,
which, we now see, will have all non-negative coefficients. We now claim that (E2E4 − E6)2

has all non-negative coefficients. In fact, as given by the Ramanujan derivative identities,
E2E4 − E6 = 3E ′4, where the prime denotes the derivative 1

2πi
d
dz

= q d
dq

. Now, E4 has

all nonnegative q-coefficients42 hence so does 3E ′4, and (3E ′4)2 = (E2E4 − E6)2. To see

that iψ1 always has non-negative coefficients, note that iψ1(t) = 1
180
· E4(E2E4−E6)

∆
, and that

−ψ2(t) = 1
60π
· E

2
4

∆
have non-negative Fourier coefficients for the same reasons.

�

Following the notation of Viazovska, let us now define cφ+(n) to be the coefficient of
qn in the expansion of φ+. We will use the above proposition to give a bound on the size of
cφ+(n).

Proposition 4.4.2. For n ≥ 6,

(96) cφ+(n) ≤ 1

30π
e4π
√
n.

Proof. Applying Proposition 5.4.1, we can underestimate the q expansion of φ+(it) by
a single summand:

φ+(it) =
∞∑
k=1

cφ+(k)e−2πkt ≥ cφ+(n)e−2πnt

whence

42Explicitly an = 240σ3(n) for n ≥ 1 and 1 for n = 0. We have also seen that this counts the number of

lattice points in E8 of magnitude
√

2n, which is manifestly non-negative.
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(97) cφ+(n) ≤ e2πntφ+(it).

We now try to pick t so as to optimize the RHS. Substituting for 1/t into (79), we get:

φ+(it) = φ(i/t)− itψ1(i/t)− t2ψ2(i/t).

Substituting in to (97), we get:

cφ+(n) ≤e2πnt
(
φ(i/t)− itψ1(i/t)− t2ψ2(i/t)

)
=e2πnt

(
∞∑
k=1

cφ+(n)e−2πn/t − it
∞∑
k=0

cψ1(k)e−2πk/t − t2
∞∑

k=−1

cψ2(k)e−2πk/t

)

=e2πnt

(
1

60π
e2π/t +

∞∑
k=1

cφ+(k)e−2πk/t − it
∞∑
k=0

cψ1(k)e−2πk/t − t2
∞∑
k=0

cψ2(k)e−2πk/t

)
,

where, in the last inequality, we exposed the q−1 term of ψ2. Now, we let t = 1√
n
. We get:

cφ+(n) ≤e2π
√
n

(
1

60π
e2π
√
n +

∞∑
k=1

cφ+(k)e−2πk/
√
n

− i√
n

∞∑
k=0

cψ1(k)e−2πk/
√
n − n

∞∑
n=0

cψ2(n)e−2πk/
√
n

)
.

For n ≥ 1, we have, by Proposition 5.4.1:

∞∑
k=1

cφ+(k)e−2πk/
√
n ≤

∞∑
k=1

cφ+(k)e−2πk = φ+(i),

− i√
n

∞∑
k=0

cψ1(k)e−2πk/
√
n ≤ 0,

−n
∞∑
n=0

cψ2(n)e−2πk/
√
n ≤ −n

∞∑
n=0

cψ2(n)e−2πn = −nψ2(i).

Thus we have, for sufficiently large n:

cφ+(n) ≤e2π
√
n

(
1

60π
e2π
√
n + φ+(i)− nψ2(i)

)
We can compute that φ+(i) = 1.574, and that ψ2(i) = −6.297. For n ≥ 6, we can see by
elementary calculus that the LHS is strictly less than 1

30π
e2π
√
n.

�
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An entirely similar argument can be used to show:

|cψ1(n)| ≤ 1

30π
e4π
√
n(98)

|cψ2(n)| ≤ 1

30π
e4π
√
n.(99)

Definition. For x ∈ R8, we let43:

a(x) :=− 1

4i

(∫ i

−1

g+(t+ 1)eπi‖x‖
2zdt+

∫ i

1

g+(t− 1)eπi‖x‖
2zdt(100)

− 2

∫ i

0

g+(t)eπi‖x‖
2zdt+ 2

∫ i∞

i

φ+ (z) eπi‖x‖
2zdt

)

where the contours along which we integrate are as in Figure 6. 44

Proposition 4.4.3. The function a defined by (100) is a Schwartz function and satisfies
â = a.

Proof. Proposition 5.4.2. gives us |cφ+(n)| ≤ e4π
√
n for sufficiently large n. Thus:

|φ+(z)| ≤C
∞∑
n=1

e4π
√
n
∣∣e−2πnz

∣∣(101)

=
∞∑
n=1

e4π
√
n
∣∣e−2πnIm(z)

∣∣
≤C ′e−2πIm(z)(102)

when Im(z) ≥ 1
2
. Thus we can estimate, for r ∈ R with r > 0:

43We warn in advance that, like in the chapter on the Cohn-Elkies linear programming bound, we will be
somewhat cavalier about the domain of this function (and similarly for the −1-eigenfunction b). Technically,
x ∈ R8, and a : R8 → R. However, a is a radial function, depending only on ‖x‖ = r. When we write a(r),
we mean a(x) for any x with ‖x‖ = r.
44Viazovska first gives this definition (although without the factor of −1/(4i), which we include to make

(106) have no factor of 4) in her paper, and later proves that it agrees with sin2(πr2/2)
∫ i∞
0

φ(−1/t)t2eπir
2t

for r >
√

2. While (100) is less immediately appealing, it is actually economical to define a in this way: it
allows for a(r) to be defined on the entire real line from the outset; the sin2-times-Laplace-transform version

only converges for r >
√

2.
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∣∣∣∣∫ i

−1

φ+

(
−1

z + 1

)
(z + 1)2eπi‖x‖

2zdz

∣∣∣∣ =

∣∣∣∣∣
∫ − 1

i+1

i∞
φ+ (z) z−4eπir

2(− 1
z
−1)dz

∣∣∣∣∣
≤C

∫ ∞
1
2

e−2πte−πr
2/tdt

≤C
∫ ∞

0

e−2πte−πr
2/tdt(103)

Viazovska simply observes that this equals C2rK1(2
√

2πr), where K1 is a modified Bessel
function of the first kind. But we need not appeal to the theory of Bessel functions to see
that this function is rapidly decreasing. Indeed, we can break the integral up45:∫ ∞

0

e−2πte−πr
2/tdt =

∫ r/
√

2

0

e−π(2t+r2/t)dt+

∫ ∞
r/
√

2

e−π(2t+r2/t)dt

The integral on the left can be bounded above:

∫ r/
√

2

0

e−π(2t+r2/t)dt ≤
∫ r/

√
2

0

e−πr
2/tdt

=

∫ ∞
√

2/r

e−πr
2tdt

t2

≤r
2

2

∫ ∞
√

2/r

e−πr
2tdt

=
r2

2
· e
−
√

2πr

πr2

=
e−
√

2πr

2π
,

and the second integral can be bounded:∫ ∞
r/
√

2

e−π(2t+r2/t)dt ≤
∫ ∞
r/
√

2

e−2πtdt

=
e−
√

2πr

2π
.

Thus (103) is always bounded by e−
√
2πr

π
, whence this summand of a(r) decays faster

than any inverse power of r. By identical reasoning, this shows that the second and third
integrals in (100) also decay faster than any inverse power ‖x‖α.

For the final integral in (100), note that:

45The point t = r/
√

2 is so chosen as the be the minimum of the function 2t+ r2/t.
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∣∣∣∣∫ i∞

i

φ+(z)eπir
2zdz

∣∣∣∣ ≤ C

∫ ∞
1

e−2πte−πr
2tdt = C ′

e−π(r
2+2)

r2 + 2

We see, therefore, that all four of the summands for a(x) decay faster than any inverse
power of r.

Now, say we apply some derivative d/dxα to a(x) (with α an 8-dimensional multi-
index). We will replace the Gaussian factor in each integrand by some polynomial p(z, x1, . . . , x8)

in the components xi and z, multiplied by the Gaussian e−π‖x‖
2tdt. The above estimates will

become:

∣∣∣∣∫ i

−1

φ+

(
−1

z + 1

)
(z + 1)2pα(z, x1, . . . x8)eπi‖x‖

2zdz

∣∣∣∣(104)

and

(105)

∣∣∣∣∫ i∞

i

φ+(z)eπi‖x‖
2zpα(z, x1, . . . x8)dz

∣∣∣∣
For (104), we can let C(x1 . . . x8) denote the maximum of |p(z, x1, . . . , x8)| on the circular arc
from z = −1 to z = i. As this arc is compact, this maximum exists; moreover, C(x1, . . . x8) is

bounded by a polynomial in x1, . . . , x8. We know already that
∣∣∣∫ i−1

φ+

( −1
z+1

)
(z + 1)2eπi‖x‖

2zdz
∣∣∣

decays faster than any inverse power of r, hence C(x1, · · · , x8)
∣∣∣∫ i−1

φ+

( −1
z+1

)
(z + 1)2eπi‖x‖

2zdz
∣∣∣

is bounded. The same estimate applies to the derivative d/dxα of the 1-to-i and 0-to-i contour
integrals. For (105), the computation reduces to the fact that a multidimensional Gaussian
lies in Schwartz space.46 We can thus conclude a(x) is a Schwartz function.

We shall now check that â = a. Note that, writing everything in terms of φ+, the
Laplace transform â(y) is given by:

−4i

∫
R8

a(x)e2πi〈x,y〉dy =

∫
R8

(∫ i

−1

φ+

(
−1

z + 1

)
(z + 1)2eπi‖x‖

2zdz

+

∫ i

1

φ+

(
−1

z − 1

)
(z − 1)2eπi‖x‖

2zdz

− 2

∫ i

0

φ+

(
−1

z

)
z2eπi‖x‖

2zdz

+ 2

∫ i∞

i

φ+ (z) eπi‖x‖
2zdz

)
e2πi〈x,y〉dy

46See [23].
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The estimates discussed above suffice to demonstrate that each of the four double
integrals converges absolutely. Hence we are justified in swapping the order of integration.
The Fourier transform of an 8-dimensional Gaussian is given by:

F
(
eπi‖x‖

2z
)

(y) = z−4eπi‖y‖
2(−1

z ).

We thus obtain:

−4iâ(x) =

∫ i

−1

φ+

(
−1

z + 1

)
(z + 1)2z−4eπi‖x‖

2(−1
z )dz

+

∫ i

1

φ+

(
−1

z − 1

)
(z − 1)2z−4eπi‖x‖

2(−1
z )dz

− 2

∫ i

0

φ+

(
−1

z

)
z2z−4eπi‖x‖

2(−1
z )dz

+ 2

∫ i∞

i

φ+ (z) z−4eπi‖x‖
2(−1

z )dz

We now substitute t = −1/z, and verify that the first two summands get swapped and the
last two summands get swapped. We shall see that our argument uses only the periodicity
of φ+. Indeed:

−4iâ(x) =

∫ i

1

φ+

(
1− 1

t− 1

)(
−1

t
+ 1

)2

t2eπi‖x‖
2tdt

+

∫ i

−1

φ+

(
1− 1

t+ 1

)(
−1

t
− 1

)2

t2eπi‖x‖
2tdt

− 2

∫ 0

i∞
φ+ (t) eπi‖x‖

2tdt

+ 2

∫ 0

i

φ+

(
−1

t

)
t2eπi‖x‖

2tdt

=

∫ i

1

φ+

(
− 1

t− 1

)
(t− 1)2eπi‖x‖

2tdt+

∫ i

−1

φ+

(
− 1

t+ 1

)
(t+ 1)2eπi‖x‖

2tdt

+ 2

∫ i∞

0

φ+ (t) eπi‖x‖
2tdt− 2

∫ i

0

φ+

(
−1

t

)
t2eπi‖x‖

2tdt

=− 4ia(x)

whence â(x) = a(x). This completes the proof of Proposition 5.4.2.
�

Now we check that our global definition of a(r) agrees with the sin2-times-Laplace-
transform version. Indeed:
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Proposition 4.4.4. For r >
√

2, we have:

(106) a(r) = sin2(πr2/2)

∫ ∞
0

g+(t)e−πr
2tdt.

Proof. Following Viazovska, we let the right hand side be d(r). From (95), we see that:

φ+

(
−1

it

)
=O

(
e−2π/t

)
as t→ 0,

φ+

(
−1

it

)
=O,

(
t2e2πt

)
as t→∞

which shows that (106) converges absolutely. Now we expand sin2(πr2/2) as−1
4

(q − 2 + q−1).
So we write:

−4id(r) =

∫ −1+i∞

−1

g+(t+ 1)eπir
2tdt− 2

∫ i∞

0

g+(t)eπir
2tdt

+

∫ 1+i∞

1

g+(t− 1)eπir
2tdt.

Now, we want to be able to shift the contours to those of Figure 6, so that we can apply
(94). We have already observed that g+ is holomorphic in H. Moreover, when r >

√
2, then,

as Im(t)→∞, ∣∣∣g+(t)eπir
2t
∣∣∣→ 0,

since, as we see from (95), g+(t) is dominated by the q−1 = e−2πit term, which is killed by the

eπir
2t-term when r >

√
2. Thus, for r >

√
2, we can deform the contours to those of Figure

6, giving:

−4id(r) =

∫ i∞

i

(g+(t+ 1)− 2g+(t) + g+(t− 1)) eiπr
2tdt+

∫ 0

i

2g+(t)eiπr
2tdt

+

∫ i

−1

g+(t+ 1)eiπr
2tdt+

∫ i

1

g+(t− 1)eiπr
2tdt.

= 2

∫ i∞

i

φ+(t)eiπr
2tdt− 2

∫ i

o

g+(t)eiπr
2tdt

+

∫ i

−1

g+(t+ 1)eiπr
2tdt+

∫ i

1

g+(t− 1)eiπr
2tdt.

= −4ia(r)

whence d(r) = a(r) for r >
√

2, finishing the proof.
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�

We now wish to verify the correct vanishing behavior of a(r) around r = 0 and r =
±
√

2. Recall that the we normalized g+ so that the principal terms of the q-expansion would
have Laplace transforms with the correct pole behavior at r = 0 and r = ±

√
2. We will

remove these terms from (106). Note that the term in the expansion (95) of g+(t) that forces
us to take r >

√
2 is the e2πt-term coming from the q−1. If we remove this term, our domain

for (106) can be extended.

Proposition 4.4.5. For all r ∈ R, we have:

a(r) = sin2(πr2/2)

(
1

4π2r4
− 42

5π2r2
− 1

60π2 (r2 − 2)
(107)

+

∫ ∞
0

(
g+(it)− 4t+

42

5π
+
e2πt

60π

)
e−πr

2tdt

)
.

Proof. We note from (95) that g+(it) = 4t − e2πt

60π
− 42

5π
+ O (t2e−2πt) as t → ∞. Thus

the integral in (107) converges absolutely for all r. When r >
√

2, we see that:∫ ∞
0

(
4t− 42

5π
− e2πt

60π

)
e−πr

2tdt =
4

π2r4
− 42

5π2r2
− 1

60π2(r2 − 2)

so that (107) holds when r >
√

2. However, due the the absolute convergence of the integral
in (107), we see that the RHS extends to a holomorphic function on a neighborhood of the
real line. But a(r), as defined by (100), is also a holomorphic function on a neighborhood of
the real line. These two functions agree for all r >

√
2, thus (107) must be true for all r.

�

Corollary. We have :

a(0) = 1, a(
√

2) = 0, a′(
√

2) = − 1

60
√

2
,

and:

a(r) = 1− 21

10
r2 +O(r4).

Proof. Plug in to Proposition 5.4.4, noticing that the only poles which will cancel
the double-zeroes of sin2 (πr2/2) come from the terms outside the integral. The Taylor series
comes from expanding sin2(πr2/2), multiplying by the 1/r2 and 1/r4 terms, and noticing that
the other terms multiplying sin2 (πr2/2) in (107) are all holomorphic at 0. (Alternatively,
note that the function a(r) is even.)

�
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We now turn to the analysis of the −1 eigenfunction. The −1 eigenfunction is sin2 times
the Laplace transform of a bona fide modular form (as opposed to a quasimodular form, as in
the +1 case), so we can immediately define g−(t) without first defining φ−(t) = g−(−1/t)t2.
Let:

(108) g−(t) := − 1

120π
· 5θ8

00θ
12
01 − 5θ4

00θ
16
01 + 2θ20

01

∆
.

This defines a holomorphic function on H, which is periodic of period 2, and modular
of weight −2 on Γ(2). Thus we can expand as a convergent q1/2-series:

(109) g−(t) = − 1

60π
q−1 − 12

5π
+

256

3π
q1/2 − 5877

5π
q +

52224

5π
q3/2 − 213280

3π
q2 +O

(
q5/2
)
.

By construction, we know that g−(t) satisfies

(110) g−(−1/t)t2 + g−(t− 1) = g−(t),

and that φ−(t) := g(−1/t)t2 satisfies

(111) φ−(t+ 1) = −φ−(t).

As we have already mentioned, Viazovska calls the three summands of (109) (up to a
constant factor) by ψS, ψT and ψI , respectively. We give their Fourier expansions, too:

g−(t+ 1) = g−(t− 1) = − 1

60π
q−1 − 12

5π
− 256

3π
q1/2(112)

− 5877

5π
q − 52224

5π
q3/2 − 213280

3π
q2

+O
(
q5/2
)

g−(−1/t)t2 = φ−(t) =
512

3π
q1/2 +

104448

5π
q3/2 +

4027392

5π
q5/2(113)

+
88256512

5π
q7/2

+O
(
q9/2
)

We note that both g−(t + 1) and g−(−1/t)t2 have consistently non-positive, and con-
sistently non-negative Fourier coefficients, respectively. We record this as:

Proposition 4.4.6. The q1/2-series for g(t − 1) has coefficients which are all non-
positive. The coefficients of the q1/2-series for g(−1/t)t2 are each non-negative, with the
coefficient of each integral power of q (even power of q1/2) equaling 0. Moreover, the coef-
ficients of qk/2 for k odd are in a ratio of 1 : −1 : 2 in g−(t), g−(t + 1), and g−(−1/t)t2,
respectively.
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Proof. Observe that the vanishing of the even powers of q1/2 in g−(−1/t)t2 follows
from (111). Next observe that g−(t) + g−(t + 1) is periodic of period 1, and therefore has
no qk/2 terms for odd k. Hence we see that g−(−1/t)t2 + 2g−(t + 1) = g−(t) + g−(t − 1) by
(110), which, similarly, cannot have any qk/2 terms for odd k. This demonstrates that the
coefficients of qk/2 for k odd are in a ratio of 1 : −1 : 2 in g−(t), g−(t + 1), and g−(−1/t)t2,
respectively.

Now, observe that

g−(t− 1) = − 1

120π
· 5θ8

10θ
12
00 − 5θ4

10θ
16
00 + 2θ20

00

∆
.

The negativity of the coefficients of g−(t−1) follows from the fact that 1/∆ has an all-positive
Fourier expansion, and since the numerator of g−(t), that is, 5θ8

10θ
12
00− 5θ4

10θ
16
00 + 2θ20

00 = 2(1 +
120q+ 5120q3/2 + 67320q2 + 503808q5/2 + 2607840q3 + · · · ), is equal to (2Θ(t) + Θ(t+ 1)) /3,
where Θ(t) is the theta series of the lattice “DualExtremal(20,2)a”.47 This identity can be
proved by the usual procedure of verifying Γ(2)-modularity of (2Θ(t) + Θ(t+ 1)) /3 (which,
as always, results from a simple application of Poisson summation) and checking that the
two q-expansions agree for a finite number (in this case, dimM10 (Γ(2)) = 6) of q-coefficients.
The expansion of Θ(t) and thus of 5θ8

10θ
12
00 − 5θ4

10θ
16
00 + 2θ20

00 manifestly has all nonnegative
coefficients; hence g−(t− 1) has all negative coefficients. The sign of g(−1/t)t2 follows from
the properties of the odd powers of q1/2 in g−, g−(t−1) and g−(−1/t)t2 that we demonstrated
previously.

As before, we write the coefficient of qn in the q-expansion of f(t) as cf (n) for periodic
functions f . Note that for f = g−(t), g−(t − 1), and g−(−1/t)t2, we can have n be a half-
integer.

Proposition 4.4.7. We have, for n ≥ 6, n ∈ 1
2
Z≥0:

|cg−(n)| ≤ 1

30π
e4π
√
n,(114)

|cg−(−1/t)t2(n)| ≤ 1

30π
e4π
√
n,(115)

|cg−(t+1)(n)| ≤ 1

30π
e4π
√
n.(116)

Proof. The proof of the inequalities for the coefficients is now essentially the same as
the proof of Proposition 5.4.2. We start with the estimates for g−(t − 1) and g−(−1/t)t2.
For each of these, we apply Proposition 5.4.6 to bound the series by a single term, apply
the modular transformation property, and then optimize the value t (letting t = 1/

√
n, as

before). This gives us the above bounds.
�

As in (102), we can use this estimate to immediately give us:

47Details of this lattice can be found in the online “Catalogue of Lattices” at http://www.math.rwth-
aachen.de/∼Gabriele.Nebe/LATTICES/DualExtremal 20 2a.html
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(117)
∣∣g−(−1/z)z2

∣∣ < Ce−πIm(z)

when Im(z) > 1
2
.

Definition. Let x ∈ R8. We now define:

b(x) := − 1

4i

(∫ i

−1

g−(z + 1)e−πi‖x‖
2zdz +

∫ i

1

g−(z − 1)e−πi‖x‖
2zdz(118)

− 2

∫ i

0

g−(z)e−πi‖x‖
2zdz − 2

∫ i∞

i

g−

(
−1

z

)
z2e−πi‖x‖

2zdz

)

where the contours are as in Figure 6.

Proposition 4.4.8. The function b is a Schwartz function and satisfies

b̂(x) = −b(x).

Proof. First we shall establish that b is in Schwartz space. We have:

∫ i

−1

g−(z − 1)e−πi‖x‖
2zdz =

∫ i+1

0

g−(z − 1)e−πi‖x‖
2zdz

=

∫ −1/(i+1)

i∞
g−

(
−1

z

)
eπir

2(− 1
z
−1)z−2dz

Recall from (117) that: ∣∣g−(−1/z)z2
∣∣ < Ce−πIm(z)

when Im(z) > 1
2
. The same estimates as in Proposition 5.4.3. now apply.

To see that b defines a −1-eigenfunction, we note that absolute convergence of the
double integral given by the Fourier transform and the Laplace transform permits us two
swap the two integrals as we did in Proposition 5.4.2. This gives us:

−4iF(b)(x) =

∫ i

−1

g−(z + 1)z−4eπi‖x‖
2(− 1

z )dz +

∫ i

1

g−(z − 1)z−4eπi‖x‖
2(− 1

z )dz

− 2

∫ i

0

g−(z)z−4eπi‖x‖
2(− 1

z )dz − 2

∫ i∞

i

g−

(
−1

z

)
z2z−4eπi‖x‖

2(− 1
z )dz

We make our perennial substitution z 7→ −1/z, giving:
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−4iF(b)(x) =

∫ i

1

g−

(
−1

z
+ 1

)
z2eπi‖x‖

2zdz +

∫ i

−1

g−

(
−1

z
− 1

)
z2eπi‖x‖

2zdz

− 2

∫ 0

∞i
g−

(
−1

z

)
z2eπi‖x‖

2zdz − 2

∫ 0

i

g− (z) z2eπi‖x‖
2zdz

Recal that φ−(t) = g−(−1/t)t2 satisfies (111), which, as we have seen, is equivalent to g−
satisfying (84) and (85). So the above is equal to:

−4îb(x) =−
∫ i

−1

g−(z + 1)e−πi‖x‖
2zdz −

∫ i

1

g−(z − 1)e−πi‖x‖
2zdz

+ 2

∫ i

0

g−(z)e−πi‖x‖
2zdz + 2

∫ i∞

i

g−

(
−1

z

)
z2e−πi‖x‖

2zdz

=− 4ib(x)

completing the argument.
�

Proposition 4.4.9. For r >
√

2, the function b(r) as defined in (118) satisfies:

(119) b(r) = sin2(πr2/2)

∫ i∞

0

g−(t)e−πir
2tdt

Proof. Following Viazovska, we define the RHS of (119) to equal some function c(r).
We note that:

g−(it) =O
(
t2e−π/t

)
as t→ 0,

g−(it) =O
(
e2πt
)

as t→∞.

Thus we can deform the path of integration into that of Figure 6. We get:

c(r) =

∫ i

−1

g−(z + 1)eπir
2tdz +

∫ i

1

g−(z − 1)eπir
2tdz

− 2

∫ ∞
0

g−(t)eπir
2tdt+ 2

∫ i∞

i

(g−(t− 1)− g(t)) eπir
2tdt

=

∫ i

−1

g−(z + 1)eπir
2tdz +

∫ i

1

g−(z − 1)eπir
2tdz

− 2

∫ ∞
0

g−(t)eπir
2tdt− 2

∫ i∞

i

g

(
−1

z

)
z2eπir

2tdt

=b(r)
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This completes the proof.
�

Proposition 4.4.10. For all r ∈ R, we have:

(120) b(r) = sin2(πr2/2)

(
− 12

5π2r2
− 1

60π2(r2 − 2)
+

∫ ∞
0

(
g−(it) +

12

5π
+
e2πt

60π

)
e−πr

2tdt

)
with the integral converging absolutely for all r ∈ R.

Proof. This is analogous to Proposition 5.4.5. Say r >
√

2. Then Proposition 5.4.9
implies that

b(r) = sin2(πr2/2)

∫ ∞
0

g−(it)e−πr
2tdt

and by (109) see:

g−(t) = − 12

5π
− e2πt

60π
+O

(
e−2πt

)
as t→∞. For r >

√
2, we have:∫ ∞

0

(
− 12

5π
− e2πt

60π

)
e−πr

2tdt = − 12

5π2r2
− 1

60π2(r2 − 2)

whence (120) holds for all r >
√

2.
But the RHS of (120) extends to a holomorphic function in a neighborhood of R in C

(the poles in the second factor are canceled by the double-zeroes of the sin2 factor). Likewise,
b(r), as defined in (118), extends to a holomorphic function in a neighborhood in C of the
real line R. These two agree for all r >

√
2. Thus (120) holds on all of R.

�

Corollary. We have:

b(0) = 0 b(
√

2) = 0 b′(
√

2) = − 1

60
√

2

and

b(r) = −3

5
r2 +O(r4)

Proof. Plug the above values into (120). To see the Taylor series, expand the Taylor
series of sin2(πr2/2) around r = 0 and expand (120). One can see that no odd powers will
appear as (120) only depends upon r2 and so is even.

�

79



Modular Magic Aaron Slipper

Note that, if we let our magic function f(r) equal a(r)+b(r), the two corollaries together
imply the Cohn-Miller conjectures and show that f ′(

√
2) = a′(

√
2) + b′(

√
2) = − 1

30
√

2
< 0

while f̂ ′(
√

2) = a′(
√

2) − b′(
√

2) = 0, exactly as needed. The final step in the argument is
to verify that no new vanishing occurs when we take the sum f(r) = a(r) + b(r), which we
shall attend to in the next section.

4.5. Completing the Proof: An Inequality of Modular Forms. We have:

Theorem 4.5.1. Let x ∈ R8, and let a(x) and b(x) be defined as in (100) and (118)
respectively. Then let

f(x) = a(x) + b(x)

Then f : R8 → R is a is a radial Schwartz function which vanishes at all non-zero magnitudes
of the E8 lattice. (As always, we somewhat abuse notation and write f(r) when we mean

f(x) for some x such that ‖x‖ = r.) That is, f(x) = 0 for all x such that ‖x‖ = {
√

2k}, for
k ∈ Z, k ≥ 1. Moreover, f satisfies:

1) For all x such that ‖x‖ >
√

2, f(x) ≤ 0.

2) For all x, f̂(x) > 0.

3) f(0) = f̂(0) = 1.

Thus f is an optimal function in 8 dimensions for the Cohn-Elkies linear programming
bound. This immediately implies that the E8 lattice packing is the densest sphere packing
in dimension 8.

Proof. We note that, by the eigenfunction property of a and b, f(x) = a(x) + b(x)

and f̂(x) = a(x) − b(x). The sin2 factor in propositions 5.4.4 and 5.4.9 showed that a and

b both vanish to order 2 at r =
√
k, k an even positive integer greater than or equal to 4.

Furthermore, the two corollaries of the previous section showed that f(0) = f̂(0) = 1, which
demonstrates 3). Moreover, both a and b were proved to be Schwartz functions, and both
were by construction radial. Therefore f , their sum, is too. When r =

√
2, f(r) = 0 and

f ′(r) < 0, while f̂(r) = 0. But we must verify that no unexpected sign changes occur; i.e.,
that no other zeroes are introduced when we take the sum a(x) + b(x).

Proposition 4.5.2. Let A(t) = g+(t) + g−(t). Then A(t) < 0 for all t ∈ (0,∞).

Note that this Proposition states something stronger than the inequality a(x) + b(x) ≤
0. It states that the integrand in (106) is pointwise negative along the imaginary axis.

Proof. By (79) we can write:

A(t) = −t2φ+(i/t)− t2φ−(i/t)

and we can also write:
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A(t) = −t2φ+(it) + itψ1(it) + ψ2(it) + g−(it)

The first of these gives us an expansion in terms of e−π/t; the latter gives us an expansion

in terms of e−πt. For n ≥ 0 a positive integer, we let A
(n)
0 and A

(n)
∞ be the partial q-expansions

of A(t) for which:

A(t) =A
(n)
0 (t) +O

(
t2e−πn/t

)
as t→ 0(121)

A(t) =A(n)
∞ (t) +O

(
t2e−πnt

)
as t→∞,(122)

For example, if n = 6, (95) and (109) give us:

A(6)
∞ =− 1

30π
e2πt − 54

5π
+

256

3π
e−πt − 12024

5π
e−2πt +

52224

5π
e−3πt

− 348032

3π
e−4πt +

2013696

5π
e−5πt

+ t
(
4 + 1128e−2πt + 52320e−4πt

)
− t2π(240e−2πt + 14400e−4πt).

Similarly, we have:

A
(6)
0 =t2

(
− 512

3π
e−π/t − 240πe−2π/t − 104448

5π
e−3π/t

− 14400−4π/t − 4027392

5π
e−5π/t

)
.

Note that A
(n)
∞ is dominated by − 1

30π
e2πt as t → ∞. So we expect that for sufficiently large

t, A
(n)
∞ will be negative. Likewise, note that A

(n)
0 is dominated by −512

3π
e−π/t. So we have

A
(n)
∞ (t) < 0 as t→ 0. We must verify that there is no “moderately sized” value of t for which

A(t) = 0. So we shall pick an n so that both A
(n)
∞ and A

(n)
0 are sufficiently close to A(t), and

then use the fact that both are finite polynomials in e−πt and e−π/t to show that there are
no other zeroes. It turns out to suffice to take n = 6.

Moreover, we can apply the bounds (96), (98), (99), (114), and (115) to yield:

(123)
∣∣∣A(t)− A(m)

0 (t)
∣∣∣ ≤ 1

30π

(
t2 + 1

) ∞∑
n=m

e2
√

2π
√
ne−πn/t

and

(124)
∣∣A(t)− A(m)

∞ (t)
∣∣ ≤ 1

30π

(
t2 + t+ 1

) ∞∑
n=m

e2
√

2π
√
ne−πnt
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Let us denote the RHS of (123) and (124) by R
(m)
0 and R

(∞)
0 , respectively. We can now

determine the maximum value of A
(6)
0 and A

(6)
∞ on the intervals (0, 1] and [1,∞). (Note that

this means the minimum of the absolute values, |A(6)
0 | and |A(6)

∞ |.) We verify that:

∣∣∣R(6)
0

∣∣∣ ≤ ∣∣∣A(6)
0

∣∣∣ for t ∈ (0, 1]∣∣R(6)
∞
∣∣ ≤ ∣∣A(6)

∞
∣∣ for t ∈ [1,∞)

A
(6)
0 (t) < 0 for t ∈ (0, 1]

A(6)
∞ (t) < 0 for t ∈ [1,∞).

This shows us that A(t) < 0 for all t ∈ (0,∞), and therefore that f satisfies 1).
�

Proposition 4.5.3. Let B(t) = g+(t)− g−(t). Then B(t) > 0 for all t.

Once again, observe this means that the integrand in the definition of our magic func-

tion f̂ is pointwise negative. This is somewhat stronger than the inequality in 2).

Proof. We know that f̂(x) = a(x) − b(x). By Propositions 5.4.4 and 5.4.9., we know
that for r >

√
2,

(125) f̂(r) = sin2(πr2/2)

∫ ∞
0

(g+(t)− g−(t))e−πr
2tdt

However, note that the q−1 terms in g+(t) and g−(t) – both of which are − q−1

60π
– cancel,

whence we see that the integrand in (125) actually converges absolutely for all r > 0. The
integral therefore extends to a holomorphic function on a complex neighborhood of R \ {0}
which agrees with f̂(r) for all r >

√
2. Thus f̂ must equal the RHS of (125) for all r ∈ R\{0}.

Following Viazovska, we let B(t) = g+(t) − g−(t). We now proceed as in Proposition
5.5.1. We have:

B(t) =− t2φ+(i/t) + φ−(i/t)t2

B(t) =− t2φ+(it) + itψ1(it) + ψ2(it)− g−(it)

As before, we define B
(n)
0 (t) and B

(n)
∞ (t) to be the partial Fourier expansions of the

above satisfying:

B(t) =B
(n)
0 (t) +O

(
t2e−πn/t

)
as t→ 0

B(t) =B(n)
∞ (t) +O

(
t2e−πnt

)
as t→∞
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We can choose n = 6:

B
(6)
0 =t2

(512

3π
e−π/t − 240πe−2π/t +

104448

5π
e−3π/t

− 14400−4π/t +
4027392

5π
e−5π/t

)
.

and

B(6)
∞ (t) =− 6

π
− 256

3π
e−πt − 54

π
e−2πt − 52224

5π
e−3πt

+
26176

π
e−4πt − 2013696

5π
e−5πt

+ t
(
4 + 1128e−2πt + 52320e−4πt

)
− t2π(240e−2πt + 14400e−4πt).

Now, applying the same bounds as in (123) and (124), we can see that:

|B(t)−B(6)
0 (t)| ≤ R

(6)
0 (t) for t ∈ (0, 1]

and

|B(t)−B(6)
∞ (t)| ≤ R(6)

∞ (t) for t ∈ [1,∞).

As before, we can use interval arithmetic to verify that∣∣∣R(6)
0

∣∣∣ ≤ ∣∣∣B(6)
0

∣∣∣ for t ∈ (0, 1]∣∣R(6)
∞
∣∣ ≤ ∣∣B(6)

∞
∣∣ for t ∈ [1,∞)

A
(6)
0 (t) > 0 for t ∈ (0, 1]

A(6)
∞ (t) > 0 for t ∈ [1,∞).

which completes the proof.
�

5. The Case of 24 Dimensions

We have now given a very thorough motivation and treatment of Viazovska’s proof
that the E8 lattice gives the densest packing of spheres in 8 dimensions. The argument for
24 dimensions involves almost no new ideas; the same fundamental constructions are used,
and they work for exactly the same reasons. Only one section of the proof, the inequality
corresponding to Proposition 4.5.2 and 4.5.3, is somewhat more difficult; however, this part
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of the proof is rather laborious and not particularly enlightening; moreover, much of it leans
on computer assistance.

It would be laborious to rehash all of the steps we went through in dimension 8. Thus
we will merely give an overview of the argument, and leave the voracious reader to read the
paper [8].

5.1. The +1 Eigenfunction. We will assume that our +1 function has precisely the same
form as it did in 8 dimensions: sin2(πr2/2) times the Laplace transform some sort of quasi-
modular form. The one difference is to note that, as discussed in section 2.10, the Fourier
transform of the 12-dimensional Gaussian has a factor of t−12, so that when we make the
t 7→ 1/t change of variables, a factor of t10 will appear where before there was a t2. (This is the

value of 2−n/2.) Thus we should expect our integrand to be of the form φ(−1/z)z10e−πzr
2
dz.

The other difference to note is that we will need to eliminate the quadruple zero of the
sin2 factor at r = 0, the double zero at r =

√
2 and a single zero at r = 4. So our Laplace

transform must have a pole of order 4 at r = 0, of order 2 at r =
√

2, and of order 1 at
r = 2. Recall that in dimension 8, our sin2-times-Laplace-transform expression for the magic
function only converged for r >

√
2 due to the presence of the pole at r =

√
2; to define it in

general we gave an analytic continuation via a sum of four integrals along shifted contours.
In the 24-dimensional case, we should expect our sin2-times-Laplace-transform expression for
the magic function to converge for all r > 2. Moreover, we expect the same contour shifting
argument to work, as it was designed to change the contour to one invariant under z 7→ −1/z;
we still need this behavior in 24 dimensions.

Keeping this in mind, we shall want, for r > 2: 48

(126) a(r) := −4 sin2(πr2/2)

∫ i∞

0

φ

(
−1

z

)
z10eπizr

2

dz.

and, by deforming the contours to those of Figure 6, we shall want to have:

a(r) :=

∫ i

−1

φ

(
− 1

z + 1

)
(z + 1)10eπizr

2

dz(127)

+

∫ i

1

φ

(
− 1

z − 1

)
(z − 1)10eπizr

2

dz

− 2

∫ i

0

φ

(
−1

z

)
z10eπizr

2

dz

+ 2

∫ i∞

i

φ (z) eπizr
2

dz

for all r, where φ is a quasimodular form, in analogy with (100). Indeed, given that φ is
well-behaved, its periodicity is sufficient to make (127) a +1 eigenfunction: applying the

48Note that we are replacing the factor of 4 so that the 4’s will not bother us in the integral expressions
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Fourier transform will exchange the first and last two integrals. In order to make (126) and
(127) agree, φ will need to satisfy an identity analogous to (67), namely:

(128) ∆(2)

[
φ

(
−1

z

)
z10

]
= φ(z).

where ∆(2) is the second finite difference operator. Thus we see that to force this to occur
we need φ(−1/z)z10 to expand like in (72):

(129) φ

(
−1

z

)
z10 = z2φ(z) + zψ1(z) + ψ2(z)

which suggests that the weight of our quasimodular form ought to be −8.
Therefore to determine φ, we assume that φ is some weight 16 polynomial in E2 E4

and E6 divided by ∆2. We can use (129), as well as consideration of the necessary behavior
of the Laplace transform at r = 0, r =

√
2 and r = 2, to help determine the 5 unknown

coefficients of the numerator: those of E4
4 , E2

6E4, E6E
2
4E2, E3

4E
2
2 and E2

6E
2
2 . We can compute

what the numerator ought to be using methods identical to those of the previous chapter.
Sparing the details will find that:

φ(z) =
(25E2

4 − 49E2
6E4) + 48E6E

2
4E2 + (−49E3

4 + 25E2
6)E2

2

∆2
(130)

= − 3657830400q − 314573414400q2 − 13716864000000q3 − · · ·

Given this φ, we can use exactly the same arguments as in section 4.4. to show
that a(r) belongs to Schwartz space and is well-behaved enough for everything to behave as
constructed. Indeed a(r) it has a pole of order 4 at r = 0, an order 2 pole at r =

√
2, and

an order 1 pole at r = 4; these account for the only singularities. Moreover, φ(−1/z)z10eπr
2z

and φ(z)e−πr
2z decay sufficiently quickly as Im(z)→∞ for us to be able to deform contours,

establishing that (126) and (127) agree. Finally, a(r) it behaves well enough so that the
Fourier transform and Laplace transform integrals may be swapped, demonstrating that a(r)
is indeed a +1 eigenfunction. We can also verify that ex post that, when properly normalized
so that a(0) = 1, a(r) satisfies the Cohn-Miller conjectures.

5.2. The −1 Eigenfunction. In analogy with the −1 eigenfunction of Viazovska, we shall
let the −1 eigenfunction be the Laplace transform of an actual modular form g− (as opposed
to a quasimodular form as in the +1 case). Repeating the same lines of reasoning as we
saw in section 4.3, and assuming that g−(z) has a denominator of ∆2, we shall see that the
numerator of g− will need to be a holomorphic modular form on Γ(2) of weight 14. There
is a 7 dimensional space of such forms, but the analogous constraint to (87)49 narrows the
available space down to three dimensions. Examining behavior of b(r) at the poles allows

49In this case it is g(−1/z)z10 + g(z − 1) = g(z).
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us to specify the function up to a constant factor, and applying the Cohn-Miller conjectures
lets us determine this factor.50

We set:

(131) b(r) :=

∫ ∞
0

g−(it)e−πr
2tdz (r > 2)

where

g−(z) :=
7θ20

01θ
8
10 + 7θ24

01θ
24
10 + 2θ28

01

∆2
(132)

= 2q−2 − 464q−1 + 172128− 367016q1/2

+ 4723846q − 459276288q3/2 +O
(
q2
)
.

We analytically continue b(r) to the entire real lines via:

a(r) : =

∫ i

−1

g− (z + 1) dz(133)

+

∫ i

1

g− (z − 1) dz

− 2

∫ i

0

g− (z) dz

+ 2

∫ i∞

i

g−

(
−1

z

)
z10dz.

As before, b(r) satisfies all the desired properties. It is a Schwartz function and a −1
eigenfunction of the Fourier transform; both (131) and (131) agree for r > 4, and it has a
pole of order 2 at r = 0, of order 1 at r =

√
2, and of order 1 at r = 2.

5.3. The Final Step. We now define the 24 dimensional magic function:

(134) f(r) = − πi

113218560
a(r)− i

262080π
b(r)

As in the case of 8 dimensions, we need to show that no extra sign changes occur
when we take this sum. Modulo one complication, this once again arises from the fact that
the integrand of f(r) = a(r) + b(r) is always less than or equal to 0, and the integrand of

f̂(r) = a(r)− b(r) is always greater than or equal to zero. Indeed, we have:

50Unfortunately, as b(r) vanishes at r = 0, we cannot merely evaluate the function at 0 to determine this
scalar constant.
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A(t) :=
π

28304640
t10φ(i/t)t10 − 1

65520
g−(it) ≤ 0

and

B(t) :=
π

28304640
t10φ(i/t)t10 +

1

65520
g−(it) ≥ 0

The proofs of these inequalities are similar in idea to those of the dimension 8 case:
we expand A and B at “0” and “at ∞”, and bound the remainder term to show that these
never unexpectedly vanish.

The complication is that the fact that B(t) ≥ 0 only suffices to show that f̂(r) > 0
for r >

√
2. It does not imply that f(r) ≥ 0 for 0 < r <

√
2. Luckily, it is indeed true that

f̂(r) ≥ 0 for 0 < r <
√

2, as can be proved by a more careful analysis of B(t). Thus f(r)
satisfies the properties of the 24-dimensional magic function, which proves that the Leech
lattice is the densest packing of spheres in 24 dimensions.

For the details of the proofs of these inequalities, we refer the reader to [8].

6. Further Questions and Concluding Remarks

As with many pieces of great mathematics, the solutions to the 8 and 24 dimensional
sphere packing problems have inspired several new lines of inquiry. We shall discuss some.

These arguments are not expected to solve the sphere packing problem in any other
dimension that 2. Indeed, numerical evidence shows that the Cohn-Elkies bound is somewhat
larger than the density of known sphere packings in dimensions other than 1, 2, 8 ans 24;
moreover, following the analogy with Delsarte’s bounds for kissing numbers, it seems quite
likely that dimensions 8 and 24 will be amenable to techniques that fail in other dimensions.
Indeed, 8 and 24 dimensions seem to be the great exceptions when it comes to all things
sphere packing.

However, there is an interesting question of constructing the magic function in dimen-
sion 2. 51 This would supply a new proof of Thue’s theorem, and would require a somewhat
different construction than Viazovka’s. A magic function for dimension 2 must vanish to
order one at 1, and to order two at all higher magnitudes of the A2 lattice; that is, numbers
of the form

√
2 (a2 + ab+ b2). A classical theorem in number theory says that numbers k of

the form a2 +ab+b2 are precisely those integers for which all primes congruent to −1 modulo
3 appear to an even power in k’s prime factorization. The number of such magnitudes less
than N grows like C ·N/

√
log(N) for a constant C. This suggests that the magic function

f is not as constrained as it is in dimensions 8 and 24; this, along with observed phenome-
non that different numerical approximations for optimal functions in dimension 2 appear to
sometimes converge to distinct functions, leads one to conclude that the magic function in
dimension 2 is not unique.

51One could also ask the (presumably easier) question of whether there is a 1-dimensional magic function
that resembles Viazovska’s solution in dimension 8. While several 1-dimensional magic functions are now
known, none appear to involve modular forms as we saw with Viazovska’s work.
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As for a construction of a 2 dimensional magic function, several difficulties arise if we
wish to proceed along the lines of Viazovska. Introducing a factor like sin2 to force the roots
into place would likely introduce too many zeroes; on the other hand, a function that vanishes
only at the magnitudes listed above could not be periodic, and so could not have a q series.
This deprives us of one of the main features of Viazovska’s argument. Dimension 2 poses
another interesting challenge: A2 is not self-dual; A∗2 is a scaled copy of A2. This situation is
quite different from E8 and the Leech lattice, both of which are unimodular.

Some further questions concern the nature of the (now known) 8 and 24 dimensional
magic functions themselves. For instance, we can ask: for which r ∈ C does the magic
function converge? Where does it accumulate essential singularities? Similarly, we could ask
about where the magic functions vanish (outside of the real line, of course, where we have
what we might call “trivial zeroes”). As discussed in section 3.3, numerical experimentation
seemed to reveal that the magic function approximations in [9] accumulated a dense line of
non-real roots in C, forming what appeared to be a natural boundary. Additionally, there
appeared to be a non-real root on the imaginary axis for both the 8 and 24 dimensional magic
function (though different actual values for each).

In fact, the convergence of the approximations used to guess the magic functions is
itself of interest. As we have discussed, various ad-hoc methods seem to converge to the
magic functions in dimensions 8 and 24, while some plausible methods of approximation
methods ultimately fail (even after initially appearing to work). It would be interesting to
get to the bottom of these phenomena.

Despite the fact that the Cohn-Elkies linear programming bound seems unable to
provide us with optimal bounds for sphere packings in dimensions other than 1, 2, 8 and
24, it is still interesting to examine what the optimal functions for the linear programming
bound might be in other dimensions. This question is of interest for its own sake (it helps

give us some sense about how much we can simultaneously control the sign of f and f̂ in
various dimensions), and because it provides us with bounds on sphere packing densities for
all dimensions d. The question of the asymptotics of the Cohn-Elkies bound as d → ∞ is
still quite mysterious.

It is also rather mysterious that the Cohn-Elkies bound does give optimal bounds in
dimensions 8 and 24, but, apparently for no other dimension above 2. The lattices giving
the densest packings in 8 and 24 dimensions are themselves highly unusual objects; indeed,
they are really the archetypal “exceptional structures” of mathematics: E8 is the root lattice
of the largest exceptional semisimple Lie algebra, and the Leech lattice is closely related to
several exceptional simple finite groups, including the famous “monster group” (which was
originally discovered in connection with the Leech lattice). Yet the magic functions seem to
not utilize any of the extraordinary structure that these lattices possess. Perhaps there are
deeper connections between the magic functions and the E8 and Leech lattices; perhaps such
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connections will help shed light on why the Cohn-Elkies bound is optimal in dimensions 8
and 24 but for no other dimensions greater than 2.52

In a somewhat different vein, the discovery of the 8 and 24 dimensional magic functions
and their apparent uniqueness have led to new work on “Fourier interpolation” – the question

of the extent to which one can simultaneously fix the values of f and f̂ , and how this
constrains the function f . Viazovska, Cohn, Kumar, Miller and Radchenko have conjectured

that, given specified values of f
(√

2n
)
, f ′
(√

2n
)
, f̂
(√

2n
)
, and f̂ ′

(√
2n
)

for positive integers
n (subject to certain clearly necessary constraints, like a sufficiently rapid rate of decay as
n → ∞), then there exists a unique radial Schwartz function f interpolating these values.
Moreover, forcing many of these values to be 0 does give rise to functions that appear related
to modular forms.53

While the conjecture concerning the interpolation of the values of f , f ′, f̂ , and f̂ ′ at√
2n for a radial Schwartz function f is still work in progress, Viazovska and Radchenko have

given a complete characterization of the values that an even 1-dimensional Schwartz function

f and its Fourier transform f̂ can take at the values ±
√
n. Rather wonderfully, it turns out

that the only constraint is the “obvious one” that comes from Poisson summation. Namely,
if xn and yn are two sequences of rapid decay (that is, such that for all k > 0, nkxn → 0 and
nkyn → 0 as n→∞) and these two sequences satisfy

∑∞
n=0 xn2 =

∑∞
n=0 yn2 , then there exists

a unique even Scwhartz function f such that f(±
√
n) = xn, f̂(±

√
n) = yn. Moreover, this

function can be explicitly constructed using modular forms much like the magic functions in
dimension 8 and 24 [32].

There is also some speculation as to whether a modified version of the Cohn-Elkies
linear programming bound may lead to solutions of the sphere packing problem in other
dimensions. In particular, like with Musin’s resolution of the 4-dimensional kissing number
problem, there is hope for a resolution of the 4-dimensional sphere packing problem, where
the optimal packing is almost certainly the lattice D4. A potential candidate for stronger
bounds are the “semi-definite programming bounds” of de Laat and Vallentin [20]. These
lie in a hierarchy, the first level of which – the so-called “two-point bound” – is exactly the
Cohn-Elkies linear programming bound. It is conceivable that higher levels of this hierarchy
will yield optimal bounds in dimension 4. (In dimension 3, however, many periodic packings
attain maximal deinsity, and a test function would have to satisfy the optimality conditions
A) – C) of section 3.1 for each such periodic packing, so it seems that only a radical departure
from the Cohn-Elkies bound could be used to give a new solution to the Kepler conjecture.)

We conclude with some general remarks. The resolution of the 8 and 24 dimensional
sphere packing problems gives us a complete, elegant solution to two cases of one of the most
natural but difficult questions in geometry. And these results have at last demonstrated
rigorously one of the most fundamental properties of the exceptional E8 and Λ24 lattices.
The arguments involve no laborious case-by-case verification, and use techniques that are

52However, while the numerical evidence is extremely convincing, it is worth noting that it is not actually
known that the Cohn-Elkies bound fails to yield optimal sphere packing bounds in other dimensions. As
Cohn points out in [4], so great is our ignorance on this issue that we cannot even rule out the possibility
that the Cohn-Elkies bound to gives optimal bounds for all sufficiently high dimensions (though, as Cohn
says, “that’s clearly ridiculous”).
53This I have learned from private correspondence with Henry Cohn.
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essentially classical in nature.54 Finally, these proofs offer yet another testament to the
versatility and power of modular forms. Many have pointed out the seemingly “unreasonable”
effectiveness of modular forms in mathematics; with Viazovska’s work, it should now be clear
that they are, in fact, magic.
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