
HARVARD UNIVERSITY

On Resilient and Exposure-Resilient

Functions

by

Yakir Reshef

A thesis

presented in partial fulfillment

of the requirements for the degree

of Bachelor of Arts with Honors

in the

Department of Mathematics

Faculty of Arts and Sciences

June 2009

http://www.harvard.edu
mailto:yreshef@fas.harvard.edu
http://math.harvard.edu
http://fas.harvard.edu


Abstract

Resilient and exposure-resilient functions are functions whose output appears random even if
some portion of their input is either revealed or fixed. We explore an alternative way of character-
izing these objects that ties them explicitly to the theory of randomness extractors and simplifies
current proofs of basic results. We also describe the inclusions and separations governing the various
classes of resilient and exposure-resilient functions. Using this knowledge, we explore the possibility
of improving existing constructions of these functions and prove that one specific method of doing
so is impossible.



Acknowledgments

First and foremost, I owe special thanks to my advisor, Professor Salil Vadhan, for the hours
of reading and thinking that he dedicated to my work. This would have been impossible without
his consistent, supportive, and insightful presence. I would also like to thank: Pablo Azar, Eleanor
Birrell, Seth Flaxman, Madelyn Finucane, Mariel Finucane, Rishi Gupta, and Daniel Steinbrook
for their helpful suggestions; my parents, Daniel and Shoshana, and my brother, David, for their
careful proofreading and much more; Hilary Finucane, who has been showing me new intellectual
horizons for almost ten years; and Reginald Hahne and Yair Schaffer, who never met each other
but together nourished the curious interest of a child into the deep fascination of a student.

ii



Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 Randomness and Pseudorandomness . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Pseudorandom Generators Versus Randomness Extractors . . . . . . . . . . . . . . . 2
1.3 Exposure-Resilience and the Key Exposure Problem . . . . . . . . . . . . . . . . . . 2
1.4 The Ideal ERF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Variations on a Theme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Contributions of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 7
2.1 The Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 “Big O” Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Algorithms and Polynomial Time . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Indistinguishability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Perfect Indistinguishability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Statistical Indistinguishability . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Computational Indistinguishability . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Randomness Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Random Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Extractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Pseudorandom Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 The RF and ERF Zoo 20
3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Resilient Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Exposure-Resilient Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iii



Contents iv

3.2 An Alternate Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 Resilient Functions: Worst-Case Extractors . . . . . . . . . . . . . . . . . . . 24
3.2.2 Weak ERF’s: Average-Case Extractors . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 The Strong ERF’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Extraction of Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 The Faulty Channel Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3 Key Renewal Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.4 All-or-Nothing Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.5 Gap Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 A Perfect ERF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Two Weakly Static Statistical ERF’s . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.3 Obtaining Computational RF’s and ERF’s . . . . . . . . . . . . . . . . . . . 36

3.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Relationships Among Resilient and Exposure-Resilient Functions 40
4.1 In a Perfect World... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 The Statistical Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Separations and a Preliminary Classification . . . . . . . . . . . . . . . . . . 42
4.2.3 Almost-Perfect RF’s and Classifying the Entire Zoo . . . . . . . . . . . . . . 48

4.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Resilience Amplification 53
5.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Resilience Amplification and Its Benefits . . . . . . . . . . . . . . . . . . . . . 54
5.1.2 Previous Uses of Amplification Procedures . . . . . . . . . . . . . . . . . . . . 54
5.1.3 Application to Weakly Static ERF’s . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 The Definition of Lossless Condensers for WSERF’s . . . . . . . . . . . . . . . . . . 57
5.3 Impossibility in the Perfect Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 Impossibility in the Statistical Setting . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4.1 A Proof Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4.2 The Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4.3 The Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Further Study 66

A Error-Correcting Codes 68

B Basic Facts about Oblivious Bit-Fixing Sources 70

Bibliography 72



Chapter 1

Introduction

Suppose we roll a fair die. The number we obtain will be random because it will have been
generated by a completely unpredictable process. That is, there is no way to predict the result
of our roll more that is more accurate than an arbitrary guess. Such random (that is, completely
unpredictable) numbers are desirable for lotteries, scientific simulations, online casinos, computer
games, encryption schemes, and randomized clinical trials, to name just a few examples. But how
can they be obtained if one does not want to spend years rolling dice?

1.1 Randomness and Pseudorandomness

Roughly a hundred years ago, the generation of long sequences of random numbers was a time-
consuming task. Researchers would either use traditional mechanisms (roulette wheels, coins, etc.)
or buy large tables of pre-generated random numbers like Leonard H.C. Tippet’s 1927 book of
41,600 random digits extracted from census data and published by Cambridge University Press [1].

With the advent of electronic computing, researchers looked for more efficient ways of obtaining
random numbers. However, getting computers to generate truly random digits is difficult because
computer programs are fundamentally deterministic: given the same input, a computer program
will produce the exact same output every time that it is run. This determinism is the opposite of a
die’s unpredictability because if we are given the input of the computer program and the program’s
source code, we can predict its output with complete accuracy.

Despite these limitations, algorithms were devised early on that could take a relatively short
and truly random input (called a seed) and produce a long sequence of digits whose distribution
“looked” random in a variety of ways. (For example, each digit appeared with approximately the
same frequency, and there were no strings of digits that repeated themselves too often.) Though
such sequences looked random in some useful ways, they had the significant drawback that they
were not guaranteed to pass any statistical test of randomness; they were only guaranteed to pass

1



Chapter 1. Introduction 2

the specific tests for which they were designed. For this reason, using them involved very real risks.
In World War II, for instance, the Japanese PURPLE cipher was consistently broken by American
intelligence because the passwords used for its encryption algorithm exhibited patterns that were
found and exploited [2]. A similar problem struck American researchers in the 1970’s when flaws
were discovered in RANDU, a widely used algorithm for generating sequences that looked random,
and many scientific results based on the algorithm were called into question [3, 4].

Examples such as these demonstrated early on the fundamental need for a theoretical under-
standing of the nature of computational randomness. This need was answered by the development
of the theory of pseudorandomness, which seeks to understand how to efficiently generate objects
that provably and quantifiably “look” random despite being constructed using little or no true
randomness. Advances in this theory have yielded algorithms capable of turning a short, truly
random seed into a sequence that, rather than passing a small battery of pre-specified statistical
tests of randomness, can pass any efficiently computable statistical test of randomness with very
high probability. The algorithms that produce these so-called pseudorandom sequences are called
pseudorandom generators (PRG’s), and their development is an active branch of the theory of
pseudorandomness.

1.2 Pseudorandom Generators Versus Randomness Extractors

PRG’s provide a powerful way of taking a short random seed and “stretching” it into a large amount
of pseudorandomness for use in computation. However, to produce a pseudorandom sequence, a
PRG still requires a truly random seed. Thus, PRG’s are not the solution to our fundamental
problem of how to “create” randomness for computational purposes.

To solve the problem, we must look outside the (deterministic) computer program for a source of
unpredictability. There are many such sources, from the quantum phenomena of noisy diodes on the
computer’s chips to the timings of a user’s keystrokes. The issue is that such sources of randomness,
though they contain some degree of unpredictability, might exhibit significant trends (like long
breaks in a user’s typing followed by rapid activity) that could make them mostly predictable
and therefore unsuitable for our purposes. However, if there were a program that converted this
“imperfect” (i.e. mostly predictable) random input into “nearly perfect” (i.e. almost completely
unpredictable) random output, we would have a solution to our problem. Luckily, there do exist
algorithms that convert such “low-quality randomness” into “high-quality randomness”, and they
are called randomness extractors. Their study is part of the theory of pseudorandomness, and it is
with an eye towards them that we will approach resilient and exposure-resilient functions.

1.3 Exposure-Resilience and the Key Exposure Problem

Cryptographic protocols are designed to allow a group of “honest” parties to perform a complex
procedure—like encryption, message authentication, or identification—in spite of interference from



Chapter 1. Introduction 3

“adversaries”. A large number of these protocols depend on exploiting the fact that one or more of
the honest parties possess a secret random string (called a “key”). However, standard cryptographic
tools provide security only under the assumption that this key remains entirely secret from any
adversary. The problem of dealing with the possibility that an adversary may discover part or all
of the key is called the key exposure problem.

The key exposure problem is of great practical interest and represents one of the most realistic
threats to security today [5]. In 1998, Nicko van Someren demonstrated a method of scanning
a computer’s memory for areas of high entropy and extracting confidential keys stored in that
memory [6]. Only weeks after this finding was published [7], viruses emerged that exploited van
Someren’s idea to steal secret keys [8]. Shamir and van Someren [7] suggested methods to prevent
such attacks from revealing a key in its entirety. However, securing cryptographic protocols against
partial key exposure remained an open problem.

Exposure-resilient functions (ERF’s), thus named because the secrecy of their output is “re-
silient” to partial exposure of their input, were introduced as a solution to this problem by Canetti
et al. [9] in 2000. Intuitively, an exposure-resilient function is a function whose output appears
random, even to an adversary who knows some portion of the function’s input bits. More precisely,
a k-ERF f is a function from n-bit strings to m-bit strings such that, for any randomly chosen
n-bit string r, no adversary can tell the difference between f(r) and a randomly chosen m-bit string
with any significant success rate, even if the adversary knows all but k of the bits of r.

How do these functions solve the key exposure problem? If an honest party (call her Alice)
possesses a randomly chosen n-bit key r along with a k-ERF f , and an adversary (call her Eve)
has obtained all but k of the bits of r, Alice can simply compute f(r) to obtain a new m-bit
key that appears random to Eve. Like a randomness extractor, f essentially takes in “low-quality”
randomness (the randomly chosen key about which Eve has some information) and deterministically
produces “high-quality” randomness (the new key, about which Eve cannot predict anything).

Because they require no additional randomness in order to produce output that is effectively
random (and is therefore useful for any cryptographic purpose), these functions provide a very
satisfying solution to the key exposure problem in two ways. First, as we have seen, obtaining
extra randomness can require significant computational resources and can be done no faster than
the rate at which a computer can gather data about its surroundings. Second, suppose that Alice
is collaborating with another honest party named Bob and that they both need to have the same
randomly chosen key r for some protocol. Then when Eve learns part of r, Alice and Bob can
independently apply f to r and, since f is deterministic, they will both end up with the same new
key, allowing them to continue using their protocol. (This procedure is detailed in Figure 1.1.) By
applying f to r, they have renewed their old key and solved the key exposure problem without
having to exchange any new information!



Chapter 1. Introduction 4

Figure 1.1: Alice and Bob have agreed on a shared random string (called a key), but they
think that Eve may have discovered some portion of it. Alice and Bob each take this key and
pass it through an ERF. They each obtain a second shared key that they can use to carry out
their cryptographic protocol, and since f depends on no additional randomness, they can do this
without exchanging any new information. Eve, who possesses only partial knowledge of the first
key, cannot predict anything about the second key because of the special properties of the ERF.
Note that, as this illustration suggests, the ERF is public; that is, we assume that Eve also has
access to the same ERF that Alice and Bob use. This knowledge, however, does not help her.

1.4 The Ideal ERF

When designing an ERF f , we typically have three goals in mind. We want f to offer protection
against as much key exposure as possible, so we seek to minimize k (the number of bits that must
be protected). We also want to maximize m, the length of the output of f , since we need f to
produce a new key that is long enough to be used in place of the old one. Lastly, we wish to make
f ’s output appear as random as possible to Eve. The extent of this randomness is quantified by
the probability ε that Eve will be able to predict something about f(r) given her partial knowledge
of r. It turns out that allowing ε to be non-zero but still keeping it very small (smaller even than
the probability that Alice’s computer will malfunction and compromise the cryptographic protocol
without her knowledge) enables us to do significantly better in minimizing k and maximizing m,
as we discuss below.



Chapter 1. Introduction 5

1.5 Variations on a Theme

There are many variants of the idea behind ERF’s that require different degrees of randomness from
f ’s output and assume different abilities on Eve’s part to compromise the security of the original
key.

For example, instead of demanding that f ’s output be almost completely unpredictable to
Eve (which corresponds to having ε be very small as mentioned above) we can demand that it
be completely unpredictable (i.e. ε = 0); or we could relax our requirements by saying that the
output can be predictable, as long as making any prediction takes a very long time (on the order
of thousands of years, for instance). Vastly different values of k and m are achievable under these
different security requirements. If ε = 0, for example, we can prove that m cannot be greater than
k, whereas if we allow a small, non-zero ε and decide that any prediction whose generation takes
thousands of years is okay, we can have m polynomially larger than k.

Looking on the other hand at Eve’s ability to compromise the key r, we could—instead of
allowing her merely to access some portion of the bits of r—enable her to actively sabotage r

by altering some of its bits. The types of functions that allow Bob to obtain random bits from
Alice under these more difficult circumstances are called resilient functions (RF’s, as opposed to
ERF’s) and were actually introduced by Kurosawa, Johansson, and Stinson [10] in 1997, before the
introduction of ERF’s.

These and many other variants of resilient and exposure-resilient functions are related in dif-
ferent ways—for example, it is easy to show that every resilient function can also be used as an
exposure-resilient function. However, much remains to be understood both about the fundamental
limitations of these functions (what parameters are achievable for different variants?) and about
their relationships to each other and to other, more basic pseudorandom objects.

1.6 Contributions of This Thesis

The contributions of this work are two-fold: first, we present a new, alternate characterization of
the various types of resilient and exposure-resilient functions that establishes a simple and explicit
relationship with randomness extractors. From this new angle we deduce that the matter of re-
silience versus exposure-resilience is a distinction between worst-case and average-case behavior.
Understanding the various RF’s and ERF’s in this way, we give an original exposition of their
basic properties and the relationships among them, along with constructions and applications. It
is hoped that this exposition succeeds in using our new insight to clarify and better motivate the
proofs in the literature.

Second, we investigate the question of whether there is a general procedure by which, given an
existing exposure-resilient function, we can somehow “amplify” its exposure-resilience property by
increasing its input size n while keeping k the same (thus decreasing the percentage of the input bits



Chapter 1. Introduction 6

that require protection). Such results have offered significant insight into the fundamental limits of
achievable parameters for other pseudorandom objects in the past: for example, the discovery of a
procedure to decrease the amount of randomness required by a given randomness extractor has led
to extractor constructions that match upper bounds in terms of the amount of randomness that they
extract. Likewise, knowing whether such a procedure exists for ERF’s would offer insight into what
is possible in terms of their parameters. In Chapter 5, we state and prove an original negative
result which shows that, under certain conditions, no such method of “resilience amplification”
exists for exposure-resilient functions. We also discuss the implications of this result for a current
open question concerning the achievable parameters of RF’s and ERF’s.

1.7 Outline

We begin by stating some notational conventions and giving a brief overview of the basics of
the theory of pseudorandomness that will be relevant to our work (Chapter 2). We then give an
exposition of the standard definitions of the different resilient and exposure-resilient functions, along
with our alternate characterization in terms of extractors and average-case behavior. Using this
alternate characterization, we exhibit a few constructions and discuss applications of the various
types of resilient and exposure-resilient functions (Chapter 3). We then continue our development of
the theory by using our alternate characterization to completely specify the relationships between
these functions (Chapter 4). Finally, we discuss the question of whether there exists a general
procedure by which we can amplify the exposure-resilience properties of ERF’s (Chapter 5). We
conclude by discussing possibilities for further research (Chapter 6).

Chapter 2 can be safely skipped by anyone familiar with the basics of the theory of pseudo-
randomness. Chapters 3, 4, and 5, however, should not be skipped even by someone familiar with
the literature, since each contains some degree of new material that is built upon later in the work.
The exceptions to this rule are Sections 3.1 (standard definitions of RF’s and ERF’s), 3.3 (appli-
cations of RF’s and ERF’s), and 3.4 (constructions of RF’s and ERF’s), which may be skipped by
a well-versed reader.



Chapter 2

Preliminaries

In this chapter we lay the foundations for our work. We begin by stating some notational conven-
tions, then formalize our notion of what it means for a distribution to be “almost random”. With
that knowledge, we go on to discuss two of the fundamental objects of the theory of pseudoran-
domness: randomness extractors, which try to obtain nearly perfect randomness from imperfect
random sources, and pseudorandom generators (PRG’s), which take a perfectly random string of
bits and stretch it into a longer string that “looks random”.

2.1 The Basics

We first state some non-standard conventions that we will use when talking about sets of strings in
{0, 1}∗ =

⋃
k {0, 1}k. We then explain our notation of probability distributions. Lastly, we discuss

how we will characterize asymptotic behavior, first of functions and then of algorithms.

2.1.1 Sets

We will use the convention that for any n ∈ N, [n] denotes the set {1, 2, . . . , n}. Additionally, for
any w ∈ {0, 1}n and any set L ⊂ [n], we will write [w]L to denote the bits of w whose positions are
in L. For i ∈ [n], we subtly abuse this notation and write [w]i to mean [w]{i}. We will use

{
n
`

}
to

denote the set {L ⊆ [n] : |L| = `} and, given some L ∈
{
n
`

}
and some a ∈ {0, 1}`, we use La,n to

denote the set {w ∈ {0, 1}n : [w]L = a}. Finally, given some L ∈
{
n
`

}
, a ∈ {0, 1}`, and M ⊂ [n],

we will write [La,n]M to mean {[w]M : w ∈ {0, 1}n, [w]L = a}. When this set has only one element
(that is, when M ⊂ L), then we will use [La,n]M to denote that single element rather than the
set itself. For example, if L ⊂ [3] is the set {1, 2} then L01,3 ⊂ {0, 1}3 is the set {010, 011} and if
M = {1} then [L00,3]M = 0.

7



Chapter 2. Preliminaries 8

2.1.2 Distributions

Throughout this work we will write distributions surrounded by angle brackets (for example: “Con-
sider the distribution 〈X〉. . . ”) to distinguish them from sets, and we will write w ← 〈X〉 to refer
to a string w chosen according to the distribution 〈X〉. When the support of a distribution 〈X〉
contains only one element, we will say that 〈X〉 is a degenerate distribution. If a distribution is
equally likely to yield any element of its support when sampled, we will refer to it as flat, or say
that it is a uniform distribution.

Flat distributions are so important in our work that we will adopt the convention that if 〈X〉
is a flat distribution then X is implicitly defined to be its support and, likewise, if X is a set then
〈X〉 is implicitly defined to be the uniform distribution over X. For example, for every L ∈

{
n
`

}
and a ∈ {0, 1}`, 〈La,n〉 is the uniform distribution on La,n, and if we define 〈A〉 := 〈La,n〉, then
A = La,n. Note that this convention would cause ambiguity if we did not restrict its application to
flat distributions only, because if for some non-flat 〈X〉 we call its support X and then implicitly
define 〈X〉 to be the uniform distribution over X we have implicitly re-defined 〈X〉. For this reason,
the convention applies only if 〈X〉 is flat, and we will use it only when a distribution clearly satisfies
this condition. We will also ignore this convention when referring to the uniform distribution over
{0, 1}n—instead of writing it as 〈{0, 1}n〉, we will simply write 〈Un〉.

Given two distributions 〈X〉 and 〈Y 〉 and some constant γ ∈ [0, 1], we use γ〈X〉 + (1 − γ)〈Y 〉
to denote the distribution obtained by sampling 〈X〉 with probability γ and sampling 〈Y 〉 with
probability (1 − γ). If 〈X〉 and 〈Y 〉 are jointly distributed (that is, if they are functions of the
same underlying random experiment), then the joint distribution of 〈X〉 and 〈Y 〉 is denoted by
(〈X〉, 〈Y 〉).

We think of distributions as random variables in that we write 〈X〉|〈Y 〉=y to refer to the random
variable we obtain by sampling 〈X〉 conditioned on 〈Y 〉 = y. Additionally, for some function f on
{0, 1}n and some distribution 〈X〉 over {0, 1}n, f(〈X〉) is the random variable sampled by choosing
some w ← 〈X〉 and calculating f(w). If we write the same distribution more than once inside
parentheses then we are referring to the same random variable in both cases, not independent
identically distributed copies of that random variable. If we really want two independent copies of
a random variable, we will distinguish between them by adding a ′ to one of them. For example, a
string chosen from the distribution (〈Un〉, 〈Un〉) will always be of the form w◦w for some w ∈ {0, 1}n,
whereas the distribution (〈Un〉, 〈U ′n〉) is equal to 〈U2n〉.

We will denote expectation with Ew←〈X〉[· · · ] and use Pr[· · · ] to refer to the probability of an
event taking place. In any expression of the form Pr[· · · ], the probability is always taken over all
random variables in the [· · · ] unless otherwise noted.



Chapter 2. Preliminaries 9

2.1.3 “Big O” Notation

In the interest of not abusing notation, we will try to treat uses of “Big O” notation as if they
refer to sets (for example: f ∈ O(g)). However, when this is cumbersome we will occasionally use
f = O(g) or f ≤ O(g) to mean the same thing. This comes up especially in cases when we want to
say, for instance, that f is bounded by g + h where h ∈ O(g′). In such a situation, we will simply
write f ≤ g +O(g′).

2.1.4 Algorithms and Polynomial Time

For a randomized algorithm A, we will separate the part of the input chosen deterministically from
the part chosen at random by writing A(x; r) where x is the user-chosen input and r is a string of
bits chosen uniformly at random.

When we say that a function f is polynomial-time computable, we mean that there is a uniform
algorithm that can compute f on inputs of arbitrarily long length in polynomial time. More
formally, if we say, for some countable N ⊂ N, that “for all n ∈ N there exists a polynomial-time
computable function f : {0, 1}n → {0, 1}m satisfying the property P”, we mean that there exists an
infinite family of functions {fn}n∈N where each fn is a function on {0, 1}n and has the property P ,
together with a uniform algorithm A which, when given a string w of length n ∈ N , can calculate
fn(w) in time asymptotically bounded by a polynomial in n.

2.2 Indistinguishability

Throughout this work, we will need to quantify how “random” various objects are. To answer this
question, we simply need a precise way of measuring how close to uniform a given distribution
is—the closer it is, the more “random” it is. There are a few different ways to define this notion of
closeness, but all can be understood through the lens of indistinguishability.

2.2.1 Perfect Indistinguishability

It is easy to state the strongest possible formulation of statistical “closeness”. Two distributions
〈X〉 and 〈Y 〉 are as close as possible to each other if they are identically distributed. In this case
we say that 〈X〉 and 〈Y 〉 are perfectly indistinguishable.

Definition 2.1 (Perfectly Indistinguishable Distributions). Two distributions 〈X〉 and 〈Y 〉 on a set
S are perfectly indistinguishable if and only if for every w ∈ S we have Pr[〈X〉 = w] = Pr[〈Y 〉 = w].

In this work, we will write 〈X〉 = 〈Y 〉 to denote that 〈X〉 and 〈Y 〉 are perfectly indistinguishable.
But why call the two distributions “indistinguishable” rather than simply calling them equal? The



Chapter 2. Preliminaries 10

reason is that this definition can also be arrived at by imagining a scenario in which an algorithm
A, given an input z, is trying to decide whether z was drawn from 〈X〉 or 〈Y 〉 by outputting 1 if
it thinks z came from 〈X〉 and outputting 0 otherwise. If 〈X〉 and 〈Y 〉 are identically distributed
then A will perform identically regardless of which distribution z came from and so it will have no
chance of figuring this out regardless of the computational resources (random bits, time, program
length, etc.) at its disposal. Thus, we can write that 〈X〉 and 〈Y 〉 are perfectly indistinguishable
if and only if, for every computationally unbounded algorithm A we have that

Pr [A(〈X〉) = 1] = Pr [A(〈Y 〉) = 1]

2.2.2 Statistical Indistinguishability

The requirement that 〈X〉 = 〈Y 〉 is quite strong, and the distributions that we discuss will rarely
have the property that no algorithm at all can ever distinguish them from uniform. However,
relaxing this notion a bit by requiring our distributions to almost always fool a computationally
unbounded distinguisher makes many impossible tasks possible. In the following definition, our
computationally unbounded distinguisher A is modelled by specifying the set T of inputs on which
it outputs 1.

Definition 2.2 (Statistical Distance). Let 〈X〉 and 〈Y 〉 be any two distributions on a set S. The
statistical distance ∆(〈X〉, 〈Y 〉) between 〈X〉 and 〈Y 〉 is defined by

∆(〈X〉, 〈Y 〉) = max
T⊂S
|Pr[〈X〉 ∈ T ]− Pr[〈Y 〉 ∈ T ]|

By modeling the distinguisher A using one set, we have implicitly restricted ourselves to consid-
ering only non-randomized distinguishers. We will soon see that this loses us no generality. In the
meantime, though, we will want a way to talk specifically about the ability of various algorithms
to distinguish between two distributions.

Definition 2.3 (Advantage). Let 〈X〉 and 〈Y 〉 be any two distributions on a set S. Let A be a
(possibly randomized) algorithm, taking inputs in S, that outputs either 0 or 1. If

|Pr[A(〈X〉) = 1]− Pr[A(〈Y 〉) = 1]| = ε

(where the probability is taken over 〈X〉, 〈Y 〉, and any potential coin flips of A), then we say that
A has advantage ε in distinguishing 〈X〉 from 〈Y 〉.

Using this new terminology, we can say that ∆(〈X〉, 〈Y 〉) = ε means that there exists a non-
randomized algorithm that has advantage ε in distinguishing between the two distributions and
that no non-randomized algorithm can do better. We now show that in fact this characterization
holds even when we consider distinguishers with access to perfectly random bits.



Chapter 2. Preliminaries 11

Proposition 2.4. Let 〈X〉 and 〈Y 〉 be any two distributions on a set S. Then ∆(〈X〉, 〈Y 〉) ≥ ε if
and only if there exists a randomized algorithm A taking inputs in S and outputting either 0 or 1
that has advantage ε in distinguishing 〈X〉 from 〈Y 〉.

Proof. The direction ⇒ is clear from the above explanation. The reason that ⇐ holds is that if we
have a randomized algorithm A(x; r) on S that has advantage ε in distinguishing 〈X〉 from 〈Y 〉,
then there is at least one setting r0 of A’s random bits on which it must have advantage at least
ε. If we fix r to r0, then we have a deterministic algorithm with advantage at least ε and we can
take T to be the set of inputs on which that algorithm accepts.

We will write 〈X〉 ∼=ε 〈Y 〉 to denote that 〈X〉 and 〈Y 〉 satisfy ∆(〈X〉, 〈Y 〉) ≤ ε. Since, as
Proposition 2.4 shows, our definition of statistical distance captures the abilities even of randomized
distinguishers, we have that 〈X〉 = 〈Y 〉 if and only if 〈X〉 ∼=0 〈Y 〉.

There are two interesting (and useful) equivalent ways to define statistical distance if we view
distributions over a set S as |S|-dimensional vectors with entries in [0, 1]. We state them in the
following proposition, the proof of which is omitted.

Proposition 2.5. Let 〈X〉 and 〈Y 〉 be any two distributions on a set S, and define

A = {w ∈ S : Pr[〈X〉 = w] > Pr[〈Y 〉 = w]}

Then we have that

∆(〈X〉, 〈Y 〉) =
∑
w∈A

(Pr [〈X〉 = w]− Pr [〈Y 〉 = w]) =
1
2

∑
w∈S
|Pr [〈X〉 = w]− Pr [〈Y 〉 = w]|

These reformulations allow us to prove some basic facts about ∆.

Lemma 2.6. For every two distributions 〈X〉 and 〈Y 〉, ∆ satisfies the following natural properties.

1. Symmetry: ∆(〈X〉, 〈Y 〉) = ∆(〈Y 〉, 〈X〉)

2. Triangle inequality: For any third distribution 〈Z〉, we have

∆(〈X〉, 〈Y 〉) ≤ ∆(〈X〉, 〈Z〉) + ∆(〈Z〉, 〈Y 〉)

3. Positive definiteness and boundedness: 0 ≤ ∆(〈X〉, 〈Y 〉) ≤ 1 with equality for identical distri-
butions and distributions with disjoint support respectively.

4. For any function f on S, we have ∆(f(〈X〉), f(〈Y 〉)) ≤ ∆(〈X〉, 〈Y 〉)

5. For any third distribution 〈Y ′〉 and constant γ ∈ [0, 1], we have

∆(〈X〉, γ〈Y 〉+ (1− γ)〈Y ′〉) ≤ γ∆(〈X〉, 〈Y 〉) + (1− γ)∆(〈X〉, 〈Y ′〉)



Chapter 2. Preliminaries 12

6. For any third distribution 〈Y ′〉, we have

∆
((
〈X〉, 〈Y ′〉

)
,
(
〈X〉, 〈Y ′〉

))
= E

w←〈X〉

[
∆
(
〈Y 〉|〈X〉=x, 〈Y ′〉|〈X〉=x

)]
Proof. Looking to the second alternate definition of ∆ in Proposition 2.5, we see that if we simply
treat 〈X〉 and 〈Y 〉 as functions from S to [0, 1], then ∆(〈X〉, 〈Y 〉) is 1/2 times the L1-norm between
the two functions. This proves properties (1), (2), and positive definiteness. Boundedness, along
with (5) and (6), is shown by simple manipulations of this L1-norm characterization of ∆.

To see (4) we observe that for any subset T ⊂ S, |Pr[f(〈X〉) ∈ T ]−Pr[f(〈Y 〉) ∈ T ]| is at most
|Pr[〈X〉 ∈ f−1(T )]− Pr[〈Y 〉 ∈ f−1(T )]|, which is, in turn, at most ∆(〈X〉, 〈Y 〉).

2.2.3 Computational Indistinguishability

In the study of pseudorandomness we sometimes find even guarantees of statistical closeness to
be too stringent. This is because, as Proposition 2.4 shows, statistical closeness requires that any
algorithm—even a computationally unbounded one—be unable to really distinguish between the two
distributions in question. Since we often seek this kind of security only against efficient algorithms,
the natural thing to do is to restrict the run-time of the algorithm A in Proposition 2.4 and call the
resulting definition “computational indistinguishability”. We run into a slight complication with
this approach though: if the two distributions being distinguished have finite supports contained
in {0, 1}∗ then any adversary can simply hardwire in a lookup table and decrease its run-time to
below whatever efficiency restriction we have imposed, thus reducing our new definition to simple
statistical distance. This is, of course, the same difficulty that we find when defining what it means
for an algorithm to run in polynomial time, and we fix it in the same way: by talking asymptotically,
which in this case requires us to make an additional definition.

Definition 2.7 (Ensemble). An ensemble is a family of distributions {〈Xn〉}n∈N where N ⊂ N is
countable and 〈Xn〉 is a distribution over {0, 1}n. An ensemble {〈Xn〉}n∈N is said to be polynomial-
time constructible if and only if there exists a randomized algorithm A, requiring d(n) random bits
on inputs of length n, such that A(1n; 〈Ud(n)〉) = 〈Xn〉 and A runs in time asymptotically bounded
by a polynomial in n.

Now we can state the definition of computational indistinguishability that we wanted in the
first place.

Definition 2.8 (Computational Indistinguishability for Ensembles). Two ensembles {〈Xn〉}n∈N
and {〈Yn〉}n∈N are (t(n), ε(n))-computationally indistinguishable if and only if every randomized,
non-uniform algorithm A running in time asymptotically bounded by t(n) has advantage at most
ε(n) in distinguishing 〈Xn〉 from 〈Yn〉 for n ∈ N sufficiently large.1

1Note that we have defined computational indistinguishability in terms of randomized, non-uniform adversaries.
There are deterministic and uniform analogues of this definition, but we will not use them in this work since all our
results hold for this stronger definition.



Chapter 2. Preliminaries 13

We express computational indistinguishability using the symbol ∼=c. That is, the expression
{〈Xn〉}n∈N ∼=c

ε(n) {〈Yn〉}n∈N means that for every polynomial p(n) we have that {〈Xn〉}n∈N and
{〈Yn〉}n∈N are (p(n), ε(n))-computationally indistinguishable.

As we do with polynomial-time computable functions, we will often suppress the parametriza-
tion by n when talking about computational indistinguishability, and so we will frequently use
〈X〉 ∼=c

ε 〈Y 〉 instead of the more cumbersome {〈Xn〉}n∈N ∼=c
ε(n) {〈Yn〉}n∈N .

At this point we’ve defined three relations on ensembles of distributions: =, ∼=ε, and ∼=c
ε.

Sometimes, though, we will want to make a statement that applies to all three relations or for
which the choice of relation is clear from context. In these cases we will use ≈.

2.3 Randomness Extraction

We now turn to the following problem: Given a coin that is biased in some known way (say it has
probability p 6= 1

2 of landing on heads), is there a way to use the coin to simulate an unbiased one?
This question is a special case of one of the central problems in the theory of pseudorandomness:
the simulation of perfectly random bits using some sort of imperfect random source. Randomness
extractors, the objects that perform this task, have unified many seemingly disparate aspects of
the theory, and we employ them to that end in this work as well. Before we can really talk
about randomness extractors though, we must decide what we mean when we talk about having
an “imperfect random source”.

2.3.1 Random Sources

The biased coin is one example of an imperfect random source. To discuss it more formally, we can
define a class of sources that represents independent flips of biased coins. These are called Von
Neumann Sources.

Definition 2.9 (Von Neumann Sources). A distribution 〈X〉 over {0, 1}n is an (n, p) Von Neumann
source if and only if 〈X〉 = (〈X1〉, 〈X2〉, . . . , 〈Xn〉) where each 〈Xi〉 is a random bit and we have
Pr[〈Xi〉 = 0] = p for every i.

Using this language, we can now state that the task of simulating an unbiased coin given a
biased one with unknown bias is equivalent to the task of building a function that extracts good
randomness from a Von Neumann source on n bits (regardless of p). A simple construction of a
function that extracts m bits that are statistically close to uniform from any Von Neumann source
on n bits exists and is left as an exercise. Von Neumann sources are not very useful, however,
because the assumptions they require us to make about both the independence between the bits
and their identical nature are quite strong. Ideally, if we want to extract m random bits from a
source, we’d like to assume only that the source has m “bits of randomness” hiding in it somehow.
The concept of min-entropy, described below, helps us to do this.



Chapter 2. Preliminaries 14

Definition 2.10 (Min-entropy2). Let 〈X〉 be a distribution on a set S. The min-entropy of 〈X〉
is defined by

H∞(〈X〉) = min
w∈S

{
log

1
Pr[〈X〉 = w]

}
(The logarithm in this definition, like all subsequent logarithms in this work, is to the base 2.)

We observe that H∞ has the following properties:

• 0 ≤ H∞(〈X〉) ≤ log |S| with equality when 〈X〉 is constant and when 〈X〉 is the uniform
distribution on S respectively.

• If 〈X〉 and 〈Y 〉 are independent, then H∞((〈X〉, 〈Y 〉)) = H∞(〈X〉) +H∞(〈Y 〉).

• For every deterministic function f , we have H∞(f(〈X〉)) ≤ H∞(〈X〉).

We are now in a position to define a class of weak random sources from which it would be
useful to extract randomness.

Definition 2.11 (Min-Entropy Source). A distribution 〈X〉 on {0, 1}n is a k-min-entropy source
(usually called a k-source) if and only if H∞(〈X〉) ≥ k

We can think a k-source 〈X〉 as a source in which the probability of drawing any one value
upon sampling 〈X〉 is at most 2−k, because H∞(〈X〉) ≥ k if and only if Pr[〈X〉 = w] ≤ 2−k for all
w ∈ S.

For most of this work, we will concern ourselves with one specific sub-class of the class of
k-sources on n bits: those k-sources consisting of k uniformly random and independent bits and
n−k fixed bits. Because the fixed bits do not depend on the random bits, these are called oblivious
bit-fixing sources (OBFS’s); we formally define them below.

Definition 2.12 (Oblivious Bit-Fixing Sources). A distribution 〈X〉 on {0, 1}n is an (n, k) oblivious
bit-fixing source if and only if for some L ∈

{
n

n−k
}

and some a ∈ {0, 1}n−k, we have 〈X〉 = 〈La,n〉

2.3.2 Extractors

With a precisely defined class of sources in mind, together with the notion of statistical distance, it
is easy to define what we want from a randomness extractor. We simply want it to take any source
from the class of sources and turn it into a distribution that is statistically close to the uniform
distribution. However, as we will see, this turns out to be impossible to do in general without
access to a small number of perfectly random bits. This has led to the introduction of two different
types of extractors.

2The reason for the notation H∞ is that there is a whole family of entropy functions {Hc : c ∈ R≥0} (Hc is called
the Renyi entropy of order c), and H∞ = limc→∞Hc.



Chapter 2. Preliminaries 15

Deterministic Extractors

Deterministic extractors are the simplest type of extractors that we consider, and they are the most
limited in terms of the classes of sources that they can handle.

Definition 2.13 (Deterministic Randomness Extractor). Let C be a class of sources on {0, 1}n. A
deterministic ε-extractor for C is a function E : {0, 1}n → {0, 1}m such that for every 〈X〉 ∈ C we
have E(〈X〉) ∼=ε 〈Um〉.

Note that we require that there be one function E that works for all sources in C. This captures
the notion that though we may know, for example, that our source is a biased coin, we may not
know what the coin’s particular bias is when we are designing E. Similarly, though we know that
some (n, k) oblivious bit-fixing source 〈X〉 will have n − k fixed bits, we may not know ahead of
time which bits those are or the values to which they will be fixed.

Unfortunately, it is easy to show that there is no hope of building a deterministic extractor for
general k-sources.

Proposition 2.14. For every function E : {0, 1}n → {0, 1}, there exists an (n − 1)-min-entropy
source 〈X〉 such that E(〈X〉) is a degenerate distribution.3

Proof. There exists some b ∈ {0, 1} such that |E−1({b})| ≥ 2n/2. Let 〈X〉 be the uniform distribu-
tion on E−1({b}).

This result shows that even if we assume that a k-source has almost as much entropy as it can
without being uniform, we will not be able to reliably extract even one bit from it. If we restrict our
attention to smaller classes of sources though, then extraction of randomness does become possible.

There is quite an array of deterministic extractors for various types of sources and applications
in the literature. A review of these is beyond the scope of this work, but we do say a few words
on deterministic extractors for oblivious bit-fixing sources since we will require them in subsequent
chapters. It is easy to see that we can always extract one perfectly random bit from a (n, 1)
oblivious bit-fixing source (by xor-ing all the bits of the input), and that we can always extract
n − 1 perfectly random bits from an (n, n − 1) oblivious bit-fixing source (by xor-ing successive
pairs of the input bits). OBFS’s with more than 1 and fewer than n− 1 fixed bits are much harder
to extract from, but there are constructions of extractors that manage to do this, one of which we
state below. This construction, due to Gabizon, Raz, and Shaltiel [11], is useful only for k �

√
n.

Theorem 2.15 (Gabizon, Raz, and Shaltiel [11]). For every constant 0 < γ < 1/2 and for ev-
ery n and k satisfying n ≥ k > n1/2+γ, there exists a polynomial-time computable deterministic
ε-extractor for (n, k) oblivious bit-fixing sources E : {0, 1}n → {0, 1}m with m ≥ k − n1/2+γ and
ε ≤ 2−Ω(nγ) for n sufficiently large.

3Recall that a degenerate distribution is one whose support contains only one element.



Chapter 2. Preliminaries 16

In the same paper, a similar construction is given that can handle k > (log n)c for some
universal constant c, but with worse error.

Theorem 2.16 (Gabizon, Raz, and Shaltiel [11]). There exist universal constants c > 0 and
0 < µ, ν < 1 such that for all n and k satisfying n ≥ k ≥ logc n there exists a polynomial-time
computable deterministic ε-extractor for (n, k) oblivious bit-fixing sources E : {0, 1}n → {0, 1}m

with m ≥ k −O(kν) and ε ∈ O(1/kµ) for n sufficiently large.

These two constructions are based on applying a method of improving the output length of
an existing extractor to two extractors of Kamp and Zuckerman [12]. In order to preserve the
continuity of the exposition in the coming chapters, we delay sketches of those constructions for
now; however, we will cite them here.

The first construction is the one used by Gabizon, Raz, and Shaltiel [11] to obtain Theorem 2.15.
As with that construction, this one is only useful when k �

√
n.

Theorem 2.17 (Kamp and Zuckerman [12]). For every constant 0 < γ ≤ 1/2 and every constant
c > 0, and for every n and k satisfying n ≥ k ≥ n1/2+γ, there exists a polynomial-time com-
putable deterministic ε-extractor for (n, k) oblivious bit-fixing sources E : {0, 1}n → {0, 1}m with
m ∈ Ω(n2γ) and ε ≤ 2−cm.

The second construction is the one used to obtain Theorem 2.16. It works for all settings of k,
but pays a price in its output length.

Theorem 2.18 (Kamp and Zuckerman [12]). For every k and n satisfying n ≥ k > 0, there
exists a polynomial-time computable deterministic ε-extractor for (n, k) oblivious bit-fixing sources
E : {0, 1}n → {0, 1}m with m ≥ log k/4 and ε ≤ 2−

√
k.

Seeded Extractors

Though a deterministic extractor cannot extract randomness from k-sources in general, it turns
out that if we give it access to a small number of truly random bits then extraction from such
sources does become possible. The truly random bits are called the seed of the extractor, and so
we refer to this type of extractor as a seeded extractor. The original motivation for the introduction
of seeded extractors was the simulation of randomized algorithms, but they have acquired many
other applications, one of which is the use of special seeded extractors called strong extractors (see
below) to construct certain types of exposure-resilient functions.

Definition 2.19 (Seeded Randomness Extractor4). Let C be a class of sources on {0, 1}n. A seeded
ε-extractor for C is a function E : {0, 1}s × {0, 1}n → {0, 1}m such that for every 〈X〉 ∈ C, we have
E(〈Us〉, 〈X〉) ∼=ε 〈Um〉.

4In the literature, the bits of the seed are typically the second parameter of the function.



Chapter 2. Preliminaries 17

There is a long line of research focusing on the construction of polynomial-time computable
seeded extractors with small seed length and large output length. However, the details of these
constructions are inessential to our work, so we refer the reader to [13–15] for surveys on applications
of seeded extractors and to [16] for a survey focusing on explicit constructions of seeded extractors.

There are cases, like the construction of exposure-resilient functions, in which we need the
seeded extractor to generate output that looks random even if the value of the seed is known to
an adversary. This gives rise to the notion of a strong extractor, which is a seeded extractor that
includes its seed as part of its output.

Definition 2.20 (Strong Randomness Extractor). Let C be a class of sources on {0, 1}n. A strong
ε-extractor for C is a function H : {0, 1}s×{0, 1}n → {0, 1}m such that for every 〈X〉 ∈ C, we have
(〈Us〉, H(〈Us〉, 〈X〉)) ∼=ε (〈Us〉, 〈Um〉).

The current “state of the art” in polynomial-time computable strong extractors is a construction
of Guruswami, Umans, and Vadhan, the parameters of which are given below.

Theorem 2.21 (Guruswami, Umans, Vadhan [17]). For every constant 0 < γ < 1, all positive
integers n and `, and for all ε > 0, there is a polynomial-time computable strong ε-extractor for
`-min-entropy sources h : {0, 1}s × {0, 1}n → {0, 1}m with m ≥ γ` and s ≤ log n+O(log (`/ε)).

2.4 Pseudorandom Generators

The last type of object that we introduce in this chapter is the pseudorandom generator (PRG).
Intuitively, PRG’s are meant to solve the following problem: given n uniformly distributed random
bits, is there a way to “stretch” those bits into `(n) bits that are close to random (with `(n) > n) by
some deterministic procedure? In other words, is there a function G : {0, 1}n → {0, 1}`(n) such that
G(〈Un〉) is close to 〈U`(n)〉? Of course, even for `(n) = n + 1 we cannot hope to obtain statistical
closeness better than ε = 1/2 because the size of the support of G(〈Un〉) would be half the size of
the support of 〈U`(n)〉. (Another way to think about this is that H∞(G(〈Un〉)) ≤ H∞(〈Un〉) = n.)
Therefore we only ask for computational indistinguishability between G(〈Un〉) and 〈U`(n)〉.

Definition 2.22 (Pseudorandom Generator). A functionG : {0, 1}n → {0, 1}`(n) is an ε-pseudorandom
generator if and only if G(〈Un〉) ∼=c

ε 〈U`(n)〉

(We are suppressing a parametrization here: this definition is actually talking about a family
of functions Gn for infinitely many n, and the computational indistinguishability is between the
ensembles {Gn(〈Un〉)} and {〈U`(n)〉})

Since we will be talking about ensembles, we will want to quantify how small the error parameter
ε should be in terms of n.

Definition 2.23 (Negligibility). A function ε : N→ R≥0 is negligible in n if and only if, for every
constant d > 0 we have ε(n) < 1/nd for sufficiently large n.



Chapter 2. Preliminaries 18

Pseudorandom generators, since they involve guarantees against the capabilities of all polynomial-
time algorithms, naturally cannot be constructed without certain (unproven) assumptions about
the limitations of such algorithms. To make clear the hardness assumption that we will use when
talking about PRG’s, we need to define what it means for a function to be “difficult to invert”.

Definition 2.24 (One-Way Function Family). A polynomial-time computable family of functions
F = {fn : {0, 1}n → {0, 1}`(n) : n ∈ N} is a one-way function family if and only if for every
randomized, non-uniform algorithm A running in time polynomial in n, and for every n ∈ N:

Pr
[
A(f(〈Un〉)) ∈ f−1(f(〈Un〉))

]
≤ ε(n)

for some ε(n) negligible in n.

One-way functions can be made to yield PRG’s, but the process is quite involved so we only
cite it here.

Theorem 2.25 (Hastad et al. [18]). The following are equivalent:

1. There exists a one-way function family.

2. There exists, for every n ∈ N, a polynomial-time computable ε-pseudorandom generator
G : {0, 1}n → {0, 1}n+1 with ε negligible in n.

3. For every constant c > 0, there exists, for every n ∈ N, a polynomial-time computable
ε-pseudorandom generator G : {0, 1}n → {0, 1}nc with ε negligible in n.

Theorem 2.25 successfully turns a one-way function into a PRG that can stretch n bits into nc

bits for any constant c > 0, regardless of whether the one-way function stretched its input at all!
This is quite powerful, as we will see when we use PRG’s in some of our constructions.

Like extractors, PRG’s are immensely useful and have found numerous applications. For exam-
ple, they provide a natural analogue to one-time pad encryption: ordinarily, to encrypt a message
x we might choose some string r ← 〈U|x|〉 as a secret key and then transmit x⊕ r, but this requires
as many random bits in our key as there are bits in our message. With a PRG, we can choose n
random bits and then encrypt a message of length `(n) by choosing r ← 〈Un〉 and sending x⊕G(r).
If `(n)� n, this saves us a great deal of randomness and private communication.

As with many pseudorandom objects, PRG’s can be defined to fool different classes of dis-
tinguishers and to satisfy different efficiency requirements. The specific definition that we have
given, with the added requirement that ε be negligible in the output length of the PRG (as it is
in Theorem 2.25), yields so-called cryptographic PRG’s. However, other variations are useful for
other purposes: for instance, PRG’s that work against non-uniform adversaries that run in time
t(`(n)) for one fixed function t(·) can be used to de-randomize randomized algorithms running in
time t(·). (In such applications, `(n) and the run-time of the PRG determine the efficiency of
the de-randomization.) For a general survey of the different types of PRG’s that includes various
constructions and further discussion of their impressive properties (including this one), see [19].



Chapter 2. Preliminaries 19

2.5 References

In the interest of leaving the flow of ideas uninterrupted, each of the remaining chapters in this
work will contain a “References” section at its conclusion that will cite any sources responsible for
proofs or ideas in that chapter. All lemmas/propositions/theorems stated without proof will carry
a citation next to their statement in the text itself, and all lemmas/propositions/proofs for which
a proof is presented will have their degree of originality (or lack thereof) explained in the final
“References” section, along with the citations of any relevant sources.

The presentation in this chapter borrows liberally from [20].



Chapter 3

The RF and ERF Zoo

This chapter presents a brief survey of the basic theory of resilient and exposure-resilient functions.
We will first give definitions of the objects we are examining, then give an alternate characterization
of RF’s and ERF’s that ties them closely to the theory of randomness extractors and will serve us
later in proving relationships among them. After laying this groundwork, we will mention some
applications and look at a few constructions, showing in the process that some RF’s and ERF’s are
equivalent to error-correcting codes and that the existence of some RF’s and ERF’s is equivalent
to the existence of pseudorandom generators.

3.1 Definitions

3.1.1 Resilient Functions

Let us begin by defining the most straightforward type of function with which we will work: the
perfect resilient function.1

Definition 3.1 (Perfect Resilient Function). A function f : {0, 1}n → {0, 1}m is a perfect k-RF if
and only if for every L ∈

{
n

n−k
}

and a ∈ {0, 1}n−k we have f(〈La,n〉) = 〈Um〉.2

Another way to approach the same definition is to set up a game in which we have a compu-
tationally unbounded adversary A that carries out the following steps:

1. Setup Step: A chooses a set L ∈
{

n
n−k
}

and a string a ∈ {0, 1}n−k and requests that any
input passed to f have the bits in L set to a.

1In the literature these are typically referred to simply as Resilient Functions
2Recall the following notational conventions:

˘
n

n−k

¯
is {S ⊆ [n] : |S| = n− k}; for L ∈

˘
n

n−k

¯
and a ∈ {0, 1}n−k,

La,n is the set of strings w ∈ {0, 1}n with [w]L = a; and 〈La,n〉 is the uniform distribution on La,n.

20



Chapter 3. The RF and ERF Zoo 21

2. Query Step: A string r is drawn from 〈La,n〉, and A receives a string z that is either f(r) or
a string drawn randomly from 〈Um〉.

3. Distinguishing Step: A attempts to output 0 if z came from 〈Um〉 and 1 otherwise.

Within this framework, we can say that f is a k-RF if and only if no A can ever gain any advantage
over f ; that is, if |Pr[A(〈La,n〉) = 1]− Pr[A(〈Um〉) = 1]| = 0 for all A, L, and a.

It is easy to construct a trivial perfect 1-RF: outputting the exclusive-or of the input bits will
always yield a perfectly random bit even if n−1 of the input bits are fixed. However, this definition
is very stringent. In what ways can we relax it? One simple change we can make is to say that
it is alright if some adversaries are able to gain a small advantage over f . We do this by saying
that we only require |Pr[A(f(〈La,n〉)) = 1]− Pr[A(〈Um〉) = 1]| ≤ ε for some ε that is negligible in
an appropriate security parameter. This leads us to the following definition:

Definition 3.2 (Statistical Resilient Function). A function f : {0, 1}n → {0, 1}m is a statistical
(k, ε)-RF if and only if for every L ∈

{
n

n−k
}

and a ∈ {0, 1}n−k we have f(〈La,n〉) ∼=ε 〈Um〉.3

We can continue to relax our demands on f by stipulating that, in addition to the fact that we
do not mind if adversaries gain a small advantage over f , we also only care about adversaries that
run in polynomial time. This gives us one last definition:

Definition 3.3 (Computational Resilient Function). A function f : {0, 1}n → {0, 1}m is a compu-
tational (k, ε)-RF if and only if for every L ∈

{
n

n−k
}

and a ∈ {0, 1}n−k we have f(〈La,n〉) ∼=c
ε 〈Um〉.4

3.1.2 Exposure-Resilient Functions

All of the relaxations that we considered above had to do with the distinguishing step of the game
that we set up. Let us consider instead relaxing the setup step by stipulating that instead of setting
some of the bits of f ’s input and having the rest of the input chosen randomly, the entire input
string r will be chosen randomly and A can view n − k of r’s bits. Functions that do well under
this relaxation are called exposure-resilient functions (ERF’s).

Once we make weaken A’s ability in the setup step, the game becomes more flexible in two ways.
First, the setup step could remain before the query step, but since the choice of r is independent
of any action that A takes, the setup step could also come after the query step, producing a so-
called “strong” ERF. Second, A may choose L, the set of bits that it is given permission to see,
either all at once (that is, statically) or adaptively. We thus have four possible ways to lead up
to the distinguishing step, each of which gives a different type of ERF. These four possibilities are
described in Table 3.1.

3Recall that for two distributions 〈A〉 and 〈B〉, 〈A〉 ∼=ε 〈B〉 means that ∆(〈A〉, 〈B〉) ≤ ε.
4Recall that for two distributions 〈A〉 and 〈B〉, 〈A〉 ∼=c

ε 〈B〉 means that no polynomial-time algorithm can distin-
guish 〈A〉 from 〈B〉 with advantage greater than ε.



Chapter 3. The RF and ERF Zoo 22

Weak Strong

Static
A chooses L all at once, receives
[r]L, and then receives z

A receives z and then chooses L
all at once and receives [r]L

Adaptive
A chooses L adaptively while re-
ceiving the appropriate bits of r
and then receives z

A receives z and then chooses
L adaptively while receiving the
appropriate bits of r

Table 3.1: Different Types of ERF’s

Having put forth these four types of ERF’s, we surely should ask whether each of them has
perfect, statistical, and computational variants. Strictly speaking, of course, they all do in the
sense that one can define each variant coherently. However, the real issue is whether we have
really just defined twelve different types of ERF’s along with our three RF’s, and whether those
ERF’s and RF’s might have anything to do with each other. This is the central question that will
occupy us in the next chapter as we prove relationships among the various species in our zoo and
exhibit constructions to differentiate between them. We will quickly discover that we are dealing
with considerably fewer than fifteen different types of functions and that there is a great deal of
structure governing their relationships, but first we must familiarize ourselves with the basics of
the theory.

Let us write some definitions for these objects that talk about distributions rather than adver-
saries, as we did with resilient functions in the previous section. In the case of weakly static ERF’s
this task is straightforward:

Definition 3.4 (Weakly Static ERF5). A function f : {0, 1}n → {0, 1}m is a weakly static (k, ε)-ERF
if and only if for every L ∈

{
n

n−k
}

we have:

([〈Un〉]L, f(〈Un〉)) ≈ ([〈Un〉]L, 〈Um〉)

In the strongly static case, we need a way to reflect the fact that A knows f(r) when it chooses
L. We can do this by creating a function d : {0, 1}m →

{
n

n−k
}

that reflects A’s decision-making
process.

Definition 3.5 (Strongly Static ERF). A function f : {0, 1}n → {0, 1}m is a strongly static
(k, ε)-ERF if and only if for every algorithm d : {0, 1}m →

{
n

n−k
}

we have:(
[〈Un〉]d(f(〈Un〉)), f(〈Un〉)

)
≈
(
[〈Un〉]d(〈Um〉), 〈Um〉

)
Two small comments are in order here: first, the subroutine d is executed by the adversary and

so it is computationally unbounded in the perfect and statistical settings, but must run in poly-
nomial time in the computational setting. Second, we will treat the function d as non-randomized

5Note that the use of ≈ in this definition means that the statement ought to be one of equality in the perfect setting,
statistical indistinguishability with parameter ε in the statistical setting, and computational indistinguishability with
parameter ε in the computational setting. This caveat applies to the next three definitions as well.



Chapter 3. The RF and ERF Zoo 23

because if some randomized d can distinguish between the two distributions then we can find a
setting to which we can fix its coin flips so that it still distinguishes with the same advantage.
These ideas also apply to the functions d that we employ in the following two definitions.

For the adaptive variants the definitions are a bit more involved:

Definition 3.6 (Weakly Adaptive ERF). A function f : {0, 1}n → {0, 1}m is a weakly adaptive
(k, ε)-ERF if and only if for every algorithm d : {0, 1}n → {0, 1}∗ that can read at most n − k of
the bits of its input, we have:

(d(〈Un〉), f(〈Un〉)) ≈ (d(〈Un〉), 〈Um〉)

What we really imagine when we talk about d is an algorithm that simply chooses n− k bits
of its input adaptively and outputs them in the order that they appear in the input. However, we
can allow d to do anything it wants for the following reason: Given d, let d′ be an algorithm that
makes all the same queries as d but outputs the results of those queries in the order it receives
them and does no more. Then d(〈Un〉) is a (deterministic) function of d′(〈Un〉). Since we showed
in Lemma 2.6 that applying a deterministic function to two distributions cannot make them any
farther apart with respect to ∆, this shows that (d′(〈Un〉), f(〈Un〉)) ≈ (d′(〈Un〉), 〈Um〉) implies
(d(〈Un〉), f(〈Un〉)) ≈ (d(〈Un〉), 〈Um〉) in the perfect and statistical settings. In the computational
setting the conclusion also holds since any distinguisher that employs d could instead be said to
employ d′ and then do the work that d does on top of d′ as part of its “distinguishing algorithm”.

We define strongly adaptive ERF’s by combining the two previous definitions:

Definition 3.7 (Strongly Adaptive ERF). A function f : {0, 1}n → {0, 1}m is a strongly adaptive
(k, ε)-ERF if and only if for any algorithm d : {0, 1}n × {0, 1}m → {0, 1}∗ that can read at most
n− k of the bits of its first input, we have:

(d(〈Un〉, f(〈Un〉)), f(〈Un〉)) ≈ (d(〈Un〉, 〈Um〉), 〈Um〉)

In this definition d is again given free latitude in what it does, even though we imagine an
algorithm that simply uses its second argument to help it adaptively request n− k bits of the first
argument and then outputs those bits in the order in which it received them. It might initially
seem here that d could output bits of its second argument and thereby cause the distribution on
the left to be far from uniform because its two components are not independent; however, in this
case both (d(〈Un〉, f(〈Un〉)), f(〈Un〉)) and (d(〈Un〉, 〈Um〉), 〈Um〉) would be far from uniform (and
close to each other) since d’s second argument is f(〈Un〉) in one case and 〈Um〉 in the other.

The latter three definitions seem quite separate from the first in that to prove that some object
satisfies them we would need to prove something about all algorithms of some sort. In the next
section we will give an alternate characterization of statistical RF’s and ERF’s that, by relating
them to randomness extractors, will enable us to solve this problem.



Chapter 3. The RF and ERF Zoo 24

3.2 An Alternate Characterization

The statistical variants of both resilient and exposure-resilient functions are concerned with trying to
produce a distribution that is statistically close to uniform using a random source that is somehow
flawed. This is reminiscent of the goal of randomness extractors, and indeed it turns out that
many of the objects we considered above can be characterized in the language of extractors. More
generally, however, we find here that a key distinction between resilient functions and exposure-
resilient functions is that we can characterize RF’s in terms of worst-case behavior and ERF’s in
terms of average-case behavior. This will be crucial in the next chapter when we try to show some
non-trivial relationships among these functions.

The alternate characterization presented here is proven only in the statistical setting, and some
of it truly does not apply to the computational setting (though we will find out in Section 3.4 that
this does not matter so much). What is true, however, is that we can use these all of these alternate
definitions in the perfect setting by just setting ε = 0.

3.2.1 Resilient Functions: Worst-Case Extractors

In the case of statistical resilient functions the connection to randomness extractors is the easiest
to see, for statistical RF’s are simply a type of extractor, as the following proposition shows.

Proposition 3.8. A function f : {0, 1}n → {0, 1}m is a statistical (k, ε)-RF if and only if it is a
deterministic ε-extractor for (n, k) oblivious bit-fixing sources.

Proof. Let 〈S〉 be an (n, k) oblivious bit-fixing source. Let L ∈
{

n
n−k
}

be the set of the positions
of the bits of 〈S〉 that are fixed, and let a ∈ {0, 1}n−k be the value to which they are fixed.
Then 〈S〉 = 〈La,n〉 and so the definitions of statistical RF and deterministic extractor become
identical.

This can be seen as a worst-case guarantee on extraction in the sense that no matter which
(n, k) oblivious bit-fixing source we choose, f will extract good randomness from it. This contrasts
nicely with the ERF’s which turn out give us average-case guarantees on the randomness they
extract.

3.2.2 Weak ERF’s: Average-Case Extractors

As in the previous section, the simplest ERF’s to deal with are the weakly static statistical (k, ε)-
ERF’s, which turn out to be equivalent to average-case deterministic extractors for very simple
classes of (n, k) oblivious bit-fixing sources.



Chapter 3. The RF and ERF Zoo 25

Proposition 3.9. A function f : {0, 1}n → {0, 1}m is a weakly static statistical (k, ε)-ERF if and
only if for every L ∈

{
n

n−k
}

, f satisfies:

E
a←〈Un−k〉

[∆ (f(〈La,n〉), 〈Um〉)] ≤ ε

Proof. As we showed in Lemma 2.6 in our preliminaries, given any two joint distributions (〈X〉, 〈Y ′〉),
(〈X〉, 〈Y ′〉), we can write

∆
((
〈X〉, 〈Y ′〉

)
,
(
〈X〉, 〈Y ′〉

))
= E

x←〈X〉

[
∆
(
〈Y 〉|〈X〉=x, 〈Y ′〉|〈X〉=x

)]
If we set 〈X〉 = [〈Un〉]L, 〈Y 〉 = f(〈Un〉), 〈Y ′〉 = 〈Um〉, the statement reads

∆ (([〈Un〉]L, f(〈Un〉)) , ([〈Un〉]L, 〈Um〉)) = E
a←[〈Un〉]L

[
∆
(
f(〈Un〉)|[〈Un〉]L=a, 〈Um〉|[〈Un〉]L=a

)]
Since f(〈Un〉)|[〈Un〉]L=a = f(〈La,n〉) and 〈Um〉 and 〈Un〉 are independent, this gives the desired
result.

Proposition 3.9 shows that a weakly static (k, ε)-ERF f is an average-case extractor for (n, k)
oblivious bit-fixing sources in the sense that given any L ∈

{
n

n−k
}

, we can create a collection of
(n, k) oblivious bit-fixing sources SL = {〈La,n〉 : a ∈ {0, 1}n−k} and we have the guarantee that f
must extract randomness well “on average” over the uniform choice of a source 〈S〉 ∈ SL.

In the weakly adaptive case, this idea holds as well, only the collections of sources about which
we have average-case extraction guarantees are more complicated. To characterize these collections,
we fist need to introduce a special class of functions called branching functions.

Definition 3.10 (Branching Function). A function ϕ : {0, 1}` →
{
n
`

}
is a branching function if and

only if, given any collection C of strings that all agree in their first i bits, ϕ satisfies the inequality∣∣⋂
w∈C ϕ(w)

∣∣ ≥ i+ 1 for all 0 ≤ i < `.

Now, to state the average-case extractor version of the definition of weakly adaptive ERF’s we
can simply replace “every set L” with “every branching function ϕ”.

Proposition 3.11. A function f : {0, 1}n → {0, 1}m is a weakly adaptive statistical (k, ε)-ERF if
and only if for every branching function ϕ : {0, 1}n−k →

{
n

n−k
}

, f satisfies:

E
a←〈Un−k〉

[∆ (f(〈ϕ(a)a,n〉), 〈Um〉)] ≤ ε

Proof. As we noted when we gave the definition of weakly adaptive ERF’s, we may assume without
loss of generality that the algorithm d from the definition simply selects n− k bits adaptively and
prints them out in the order that they appear in the input. Thus, by the same argument as in



Chapter 3. The RF and ERF Zoo 26

the previous proposition we can show that the definition of weakly adaptive statistical ERF is
equivalent to:

∆ ((d(〈Un〉), f(〈Un〉)) , (d(〈Un〉), 〈Um〉)) = E
a←〈Un−k〉

[
∆
(
f(〈Un〉)|d(〈Un〉)=a, 〈Um〉

)]
We have written 〈Un−k〉 instead of d(〈Un〉) under the expectation operator since the bits of 〈Un〉
are independent and therefore d(Un) will equal 〈Un−k〉 no matter which positions d chooses to read.
We have also simplified 〈Um〉|d(〈Un〉)=a to 〈Um〉. Now let us deal with the two directions of the
proposition separately:

(⇐): Suppose we are given any algorithm d as in the definition of weakly adaptive ERF’s. Then
given any string a ∈ {0, 1}n−k, define ϕ(a) to be the set of the positions of the bits that d requests
when it is fed the bits of a one at a time in response to its queries. Since d adaptively requests
positions, we know that if it receives the same bits in response to its queries then it will request
the same positions. In other words, ϕ is a branching function. Since 〈ϕ(a)a,n〉 = 〈Un〉|d(〈Un〉)=a, we
are done.

(⇒): Suppose we are given any branching function ϕ as described above. We will build an
algorithm d : {0, 1}n → {0, 1}∗ that adaptively requests n − k positions of its input and prints
them out with the property that d(x) = a if and only if [x]ϕ(a) = a. For any string w of length
0 ≤ |w| < n−k, we can apply ϕ to all possible completions of w to a string of length n−k with the
guarantee that all the resulting sets will have at least |w|+ 1 elements in common. Let Sw denote
the set of these elements. It is easy to see that for every β ∈ {0, 1} we have Sw ⊇ Sw◦β.

We now can build d: we will have it initially request any element of Se (where e is the string
of length 0). At any other point in its execution, d will have received some string w of bits, and so
we can have it request any element of Sw that has not yet been requested (which must be possible
since |Sw| ≥ |w|+1 and only |w| bits have been requested so far). This d has the claimed properties
and thus f(〈ϕ(a)a,n〉) = f(〈Un〉)|d(〈Un〉)=a and f is a weakly static statistical ERF as claimed.

It is instructive to note that the forward direction of this proof does not work in the computa-
tional setting, because there is no guarantee that the algorithm d that we construct will be efficient.
Thus, this characterization really is specific to the statistical setting. In Section 3.4 we will see,
though, that the statistical setting is more central than the computational setting because we can
easily construct computational ERF’s from statistical ERF’s.

We have seen how the weak ERF’s are average-case extractors for different types of collections
of sources. What, then, are the strong ERF’s, and can we define them similarly?



Chapter 3. The RF and ERF Zoo 27

3.2.3 The Strong ERF’s

It may seem strange now, but our work in the next chapter (specifically, at the end of Section 4.2.2)
will show us why the strong ERF’s in fact cannot be characterized in terms of average-case de-
terministic extraction for (n, k) oblivious bit-fixing sources. However, we can finish our alternate
characterization by defining the strong ERF’s in terms of average-case behavior. This will prove
quite useful later when we go about classifying our functions and will give us some insight into the
differences between the strong and weak ERF’s.

Let us first write our alternate definition of strongly static statistical ERF’s.

Proposition 3.12. A function f : {0, 1}n → {0, 1}m is a strongly static statistical (k, ε)-ERF if
and only if, for every function d : {0, 1}m →

{
n

n−k
}

, f satisfies:

1
2

E
a←〈Un−k〉

 ∑
z∈{0,1}m

∣∣Pr[f(〈d(z)a,n〉) = z]− 2−m
∣∣ ≤ ε

Proof. The argument is a straightforward manipulation of the definition of statistical distance. We
know that

(
[〈Un〉]d(f(〈Un〉)), f(〈Un〉)

) ∼=ε

(
[〈Un〉]d(〈Um〉), 〈Um〉

)
= 〈Un−k+1〉, so by appealing to the

interpretation of statistical distance in terms of the L1-norm (Proposition 2.5), we may write:

ε ≥ 1
2

∑
a∈{0,1}n−k
z∈{0,1}m

∣∣∣Pr
[(

[〈Un〉]d(f(〈Un〉)), f(〈Un〉)
)

= (a, z)
]
− 2−(n−k+m)

∣∣∣
=

1
2

∑
a∈{0,1}n−k
z∈{0,1}m

∣∣∣Pr
[
f(〈Un〉) = z|[〈Un〉]d(z)=a

]
· Pr

[
[〈Un〉]d(z) = a

]
− 2−(n−k+m)

∣∣∣
=

1
2

∑
a∈{0,1}n−k
z∈{0,1}m

∣∣∣Pr [f(〈d(z)a,n〉) = z] · 2−(n−k) − 2−(n−k+m)
∣∣∣

=
1
2
· 1

2n−k
∑

a∈{0,1}n−k

∑
z∈{0,1}m

∣∣Pr [f(〈d(z)a,n〉) = z]− 2−m
∣∣

=
1
2

E
a←〈Un−k〉

 ∑
z∈{0,1}m

∣∣Pr [f(〈d(z)a,n〉) = z]− 2−m
∣∣

Note that if the function d completely ignored the argument y (that is, if f were effectively
a weakly static ERF) then this alternate definition reduces exactly to our alternate definition of
weakly static ERF’s, indicating that this really is the appropriate definition from our new viewpoint
of average-case behavior.



Chapter 3. The RF and ERF Zoo 28

Lastly, we mention that to turn this into a definition for strongly adaptive ERF’s, we may
simply replace d(y) with d(a, y) and stipulate that d be a branching function in its first argument.
The proof is identical to that of Proposition 3.11.

Remark 3.13. We have seen that RF’s are worst-case randomness extractors while weak ERF’s are
average-case extractors, and that strong ERF’s are another sort of average-case object. A natural
question to ask at this point is whether there might exist a worst-case analogue of the strong ERF’s.
There is something to this intuition, and we will return to it in detail in Section 4.2.3 after we sort
out the world of RF’s and ERF’s.

3.3 Applications

Now that we have written down precise definitions for our functions, we can go into some of the
applications of RF’s and ERF’s in detail.

3.3.1 Extraction of Randomness

If we look to the definitions given in our alternate characterization of the theory, we see that
statistical RF’s can extract randomness deterministically from oblivious bit-fixing sources and that
weak statistical ERF’s can extract randomness on average from various families of oblivious bit-
fixing sources.

3.3.2 The Faulty Channel Problem

Suppose Alice and Bob need to share a random key w ∈ {0, 1}m in order to carry out some
cryptographic protocol, but the only way they can communicate privately is through a channel C
that is somehow faulty. Suppose further that over some perfect but public channel Alice and Bob
have shared an efficient description of a polynomial-time computable function f : {0, 1}n → {0, 1}m

that is some sort of RF or ERF and that Alice chooses some x→ 〈Un〉, sends x to Bob through C,
and then both parties use f(x) as the key for their protocol. Let us explore what kinds of faults
in C can be overcome depending on the type of RF or ERF that f is. (In the following discussion
we suppress the parameter ε, along with the obvious statements about the security being either
perfect, statistical, or computational)

• If f is a weakly static (resp. adaptive) k-ERF, Alice and Bob will be able to thwart any
interlocutor Eve who can statically (resp. adaptively) access up to n− k bits of any message
sent through C.

• If f is a k-RF, Alice and Bob will be able to thwart Eve even if she can tamper with up to
n− k bits of any message sent through C. They would also be able to preserve the integrity



Chapter 3. The RF and ERF Zoo 29

of their protocol if C is simply unreliable in the sense that it may incorrectly transmit up to
n− k bits of each message.

In all of these scenarios, the bits coming out of C to Bob are essentially a family of sources,
which is why applying an RF or weak ERF to them gives us output that looks random. In the
case of ERF’s, this shows that ERF’s with long outputs are basically extra-strength PRG’s in the
sense that wherever we would use a PRG G (for example, in a one time pad E(x; r) = x ⊕ G(r))
we can replace G by a computational ERF f to make our protocol exposure resilient (the one-time
pad would become E(x; r) = x⊕ f(r)).

3.3.3 Key Renewal Problem

Suppose that Alice and Bob already share a key, but they are worried that Eve has learned up to
n − k of its bits either adaptively or statically. If f is a weakly adaptive or static ERF, they can
each separately apply f to their current key and obtain a new one that is secure once more. In fact,
they can keep their key secure even if Eve is constantly learning bits of their key at some bounded
rate: all they need to do is periodically apply f to the key with period slightly shorter than the
amount of time it takes Eve to learn n − k + 1 bits! Note that in order for the key not to shrink
with every iteration, this problem requires m = n, and so f needs to be a computational ERF.

3.3.4 All-or-Nothing Transforms

The above constructions all only use RF’s and weak ERF’s. For what might we require strong
ERF’s? Well, in the above scenarios, our RF/ERF f provided us with exposure-resilient keys of all
sorts, but they all had one element in common: the key required for the protocol was a uniformly
random one. What about protocols that require keys with more structure than that? One solution
is to treat whatever uniformly random bits are used to generate those keys as the “real” key and
proceed as above. However, a more direct solution is to use a so-called all-or-nothing transform
(AONT). An AONT is an efficiently invertible function with the property that if an adversary
learns all but k bits of its output then he can determine nothing about the input. There are static,
adaptive, perfect, statistical, and computational variants of this definition (there are not strong
and weak variants since the adversary begins by receiving the output of the function in all cases).
The formal definition of a static statistical AONT appears below.

Definition 3.14 (Static Statistical All-or-Nothing Transform). A possibly randomized function
T : {0, 1}n → {0, 1}m is a k-AONT if and only if

1. T is injective and efficiently invertible.

2. For any L ∈
{

m
m−k

}
and any x0, x1 ∈ {0, 1}n we have that

(x0, x1, [T (x0)]L) ∼=ε (x0, x1, [T (x1)]L)



Chapter 3. The RF and ERF Zoo 30

In other words, [T (x0)]L is indistinguishable from [T (x1)]L for any x0, x1.

An important generalization of this is to give the adversary unrestricted access to some part
of the output of the transform (the so-called “public” part) while restricting its access to the rest
of the output (the “secret” part). Satisfyingly, Canetti et al. [9] show that if f : {0, 1}n → {0, 1}m

is a weakly static statistical (k, ε)-ERF then the randomized function6 T (x; r) = (r, x⊕ f(r)) is a
static statistical AONT with secret part r and public part x ⊕ f(r). Further, Dodis, Sahai, and
Smith [21] observe that the same construction suffices to build an adaptive statistical AONT as
long as f is a strongly adaptive ERF.

3.3.5 Gap Secret Sharing

Suppose we require a random secret for some protocol and want to share it among n parties in
a way such that if any n − k or fewer of the parties collaborate they will gain no computational
information about the secret, but if all the parties collaborate they will be able to calculate the
secret. A scheme that achieves this goal is called a gap secret-sharing scheme (the “gap” is between
n− k and n), and we can of course build one by choosing x← 〈Un〉, distributing each bit of x to a
different party, and using f(x) as our secret (here f is a weak k-ERF).

This is nice, but once again it only works if our secret is drawn from the uniform distribution.
If we use an AONT we can achieve the same goal with an arbitrary secret, for if s is our secret and
T is an AONT, we can distribute the bits of T (x) to the parties.

AONT’s have wide-ranging applications that are beyond the scope of this work. For an expo-
sition on the topic, see [22].

3.4 Constructions

Here we discuss how to actually build polynomial-time computable instantiations of the objects we
have defined and learn a bit more about them in doing so. We will first build a perfect ERF and
discover that in the case of linear functions on Fn2 , ERF’s are the same as error-correcting codes.
Next, by relaxing our requirements to statistical indistinguishability, we will be able to build ERF’s
with much better parameters. Finally, we will see that in the computational setting we can use a
pseudorandom generator to build an ERF with ideal parameters and that in fact the existence of
computational RF’s and ERF’s is equivalent to the existence of PRG’s.

Throughout the section, we construct mostly ERF’s for the sake of consistency in comparisons
of parameters. However, we prove the correctness of some of our constructions by establishing that

6Recall that T (x; r) indicates that T is a function of x that uses the uniformly random bits r.



Chapter 3. The RF and ERF Zoo 31

they are RF’s. This is justified in the following chapter, in which we show that every perfect (resp.
statistical) RF is also a perfect (resp. statistical) ERF (see Theorems 4.1 and 4.7).7

Recall the that there are two ways that we wish to optimize the parameters of an ERF
f : {0, 1}n → {0, 1}m First of all, we want the number of protected bits k to be as small as possible
relative to n. Second, we want the output size m to be as large as possible. With these goals in
mind, let us see what we can achieve in each setting. . .

3.4.1 A Perfect ERF

Despite the title of this section, we are going to construct our perfect ERF by constructing a
perfect RF (which is therefore a perfect ERF by a trivial reduction). This is no accident: in the
next chapter we will show that all the different types of perfect ERF’s are in fact equivalent to
perfect RF’s. For the time being, however, we will have to be content with a construction that
seems stronger than what we need.

What sorts of parameters can we expect from a perfect k-RF f : {0, 1}n → {0, 1}m? As we
mentioned earlier in this chapter, when m = 1 and k ≥ 1 then f(w) =

⊕
i[w]i is a perfect k-RF.

Additionally, if we want k = n − 1 and m ≤ k, we can let f return the exclusive-or of any m

consecutive pairs of bits of its input. These examples suggest that m ≤ k always, and a simple
argument confirms this: if f(〈La,n〉) is to equal 〈Um〉, then the support of 〈La,n〉 must be of size
at least 2m. (We will see that the same bound applies in the statistical setting for ε < 1/2.) This
is a serious limitation as far as we’re concerned, because ideally we’d like our ERF’s to give us as
many “random” bits as possible.

Towards a Construction

A slightly different way to think about a perfect RF is as a function that, when restricted to any
set La,n, is surjective and maps the same number of strings to each element in its target space (we
call this property regularity). The following simple lemma shows that if we restrict our search to
the linear functions over Fn2 , we are essentially looking for an m-by-n matrix with the property that
any k of its columns span Fm2 .

Lemma 3.15. Let M : Fn2 → Fm2 be a linear function represented by an m×n matrix whose columns
span Fm2 . Then M is 2n−m-regular (i.e. M maps exactly 2n−m elements of Fn2 to each element of
Fm2 ).

Proof. Fn2 and Fm2 are of course groups under addition, and M is a homomorphism between them.
Since dim(ImM) = m, we know that dim(kerM) = n−m. Let K = kerM . Since K is a subgroup
of Fn2 , all of its cosets are the same size (namely, |K| = 2n−m). Each of these corresponds to the
pre-image under M of a different x ∈ Fm2 , so we are done.

7The reduction is actually quite simple and appears in a different chapter only for structural reasons.



Chapter 3. The RF and ERF Zoo 32

Fortunately, the theory of error-correcting codes gives us such functions, and within the world
of linear functions they in fact turn out to be equivalent to perfect RF’s. (For background infor-
mation on error-correcting codes, including their definition and some of their basic properties, see
Appendix A.)

Theorem 3.16. Let M be an m×n matrix. Define a function f : {0, 1}n → {0, 1}m by f(r) = M ·r.
Then f is a perfect k-RF if and only if the map N : {0, 1}m → {0, 1}n sending x ∈ {0, 1}m to
xT ·M ∈ {0, 1}n is an error-correcting code with minimum distance d ≥ n− k + 1.

Proof. (⇐): Since N(0m) = 0n, any non-trivial linear combination of the rows of M must have at
least d ones. Thus, we can remove any d − 1 ≥ n − k of the columns of M , call the new matrix
M ′, and know that its rows are linearly independent since any non-trivial linear combination of
them will have at least one entry equal to 1. Since the m rows of M ′ are linearly independent, its
row rank (and therefore its column rank) is m = dim Fm2 , allowing us to apply Lemma 3.15 to find
that the map x 7→ M ′ · x is regular . This shows that f is regular on La,n for any L ⊂ [n] of size
d− 1 ≥ n− k and a = 0d−1. But in fact the result holds for any a, for we may assume without loss
of generality that L = [d− 1] and then write La,n = a ◦ 0n−d+1 + L0d−1,n. Then by the linearity of
f we have that f(La,n) = M · (a ◦ 0n−d+1) + f(L0d−1,n) which is also regular since it differs from a
regular map by addition of a constant, which is a permutation of Fm2 .

(⇒): Suppose for contradiction that we have v ∈ {0, 1}m non-zero and with the property that
vT ·M has fewer than n− k+ 1 ones. Then we can find a set of n− k columns to remove such that
the remaining matrix M ′ has a linear dependency among its rows. So the row rank (and therefore
the column rank) of M ′ is strictly less than m, implying that r 7→ M ′ · r is not surjective. This
means that if we let L be the set of indices of the columns we removed from M , we have that
f(L0n−k,n) is not surjective, implying that it is not regular since 0m is in its image but there exists
some string in {0, 1}m that is not. Therefore, f is not a perfect k-RF.

Given this result, it is satisfying to note that the “Singleton bound” on error-correcting codes
(Proposition A.2), which states that m ≤ n− d+ 1, gives us the previously discussed bound m ≤ k
for perfect k-RF’s, and vice versa.

What kinds of parameters does the above theorem give us? Proposition A.3 in Appendix A
shows that for an error-correcting code corresponding to a linear function f : {0, 1}n → {0, 1}m we
have that m > log n + 1 implies d < dn/2e, which implies that in terms of f ’s parameters we are
limited to k > dn/2e as long as we insist on having any appreciable sort of output length.

3.4.2 Two Weakly Static Statistical ERF’s

In our perfect ERF construction, we had two serious limitations: k ≥ n/2, and m ≤ k. This is
(mostly) not a deficiency of the constructions themselves, for m ≤ k follows necessarily from the
definition, and Chor et al. [23] show that even for m = 2 we must have k ≥ n/3; that is, one third
of the bits of the input must remain secret in order to get even two random bits.



Chapter 3. The RF and ERF Zoo 33

Relaxing our definition of indistinguishability to the statistical one allows us to overcome these
two limitations, but there is no known construction that addresses both at once. We will therefore
present two constructions:

• Our first construction is a weakly static statistical ERF with output length γk for any constant
0 < γ < 1 and exponentially small ε that works when k ∈ ω(log n). This output length is
essentially optimal for the statistical setting, for if we have m > k, then the support of
f(〈La,n〉) is less than half of {0, 1}m and so ∆(f(〈La,n〉), 〈Um〉) ≥ 1/2 for all L and a, which
means that when we average over a in Proposition 3.9, we will get ε ≥ 1/2.

• Our second construction is a statistical RF that works for any k (including even constant k),
but pays a price in output length, outputting only (log k)/4 random bits. Recall that this
function will, by virtue of being a statistical RF, also be a weakly static statistical ERF as
desired.

The First Construction: Almost Optimal Output Length

Our first construction takes a strong extractor for sources with min-entropy k and uses it directly as
a weakly static statistical ERF.8 It makes sense that such an object would help us obtain an ERF:
part of its input has exposure-resilient properties (that is, seeing the seed of a strong extractor does
not help any adversary as long as that seed was chosen randomly and independently of the rest of
the input), and the rest of its input has resilient properties (setting some of the non-seed input bits
of a strong extractor for k-sources does not cause the output to deviate significantly from uniform).

Before we prove this though, sketching it in more detail will be helpful: what we do is use part
of f ’s input (say the first s bits) to seed the extractor. The above discussion shows that if this part
of the input is seen by the adversary then we lose nothing. As for the rest of the input: regardless
of which bits have been seen by the adversary, there will be at least k− s bits that are still hidden,
and so, conditioned on the values of the revealed bits, we are left with a (k− s)-source from which
we can extract provided our extractor is good enough. It is important to note two things here:
first, that the construction is not a resilient function because the strong extractor property, while
it protects against exposure of the seed, relies on the seed being chosen uniformly at random; and
second, that we must have s be small enough so that our (k− s)-source has enough entropy left in
it from which to extract. This argument is formalized in the following theorem.

Theorem 3.17. Let h : {0, 1}s × {0, 1}n → {0, 1}m be any strong ε-extractor for `-sources. Then
the function f : {0, 1}n+s → {0, 1}m that is defined by setting f(w) = h([w][s], [w][n+s]\[s]) is a weakly
static statistical (k, ε)-ERF for k ≥ `+ s.

Proof. Fix any L ∈
{

n+s
n+s−k

}
. We will show that f is an average-case extractor for the set of sources

{〈La,n+s〉 : a ∈ {0, 1}n+s−k}, which will satisfy our alternate characterization for weakly static
statistical ERF’s.

8We cover min-entropy in Section 2.3.1.



Chapter 3. The RF and ERF Zoo 34

Let L1 = L ∩ [s] and let L2 = L − L1. For any a ∈ {0, 1}n+s−k, let ai denote [La,n+s]Li .
9

We have that |L2| ≤ |L| = n + s − k. Therefore, the number of un-fixed bits in 〈La2,n
2 〉 is at least

n− |L2| = k − s ≥ `, so 〈La2,n
2 〉 is an `-source for any a2 ∈ {0, 1}|L2|.

Since h is a strong extractor for such sources, we have by definition that for any y ∈ {0, 1}|L2|:

(〈Us〉, h(〈Us〉, 〈Ly,n2 〉)) ∼=ε (〈Us〉, 〈Um〉)
⇒ ([〈Us〉]L1 , h(〈Us〉, 〈Ly,n2 〉)) ∼=ε ([〈Us〉]L1 , 〈Um〉)

And rewriting with the help of Lemma 2.6 from our preliminaries, we arrive at

E
x←〈U|L1|〉

[∆ (h (〈Lx,s1 〉, 〈L
y,n
2 〉) , 〈Um〉)] ≤ ε

If this inequality holds for each y ∈ {0, 1}|L2| then surely it holds when we take expectation over y,
so we may write:

ε ≥ E
y←〈U|L2|〉

[
E

x←〈U|L1|〉
[∆ (h (〈Lx,s1 〉, 〈L

y,n
2 〉) , 〈Um〉)]

]
= E

a←〈Un−k〉
[∆ (h (〈La1,s

1 〉, 〈La2,n
2 〉) , 〈Um〉)]

= E
a←〈Un−k〉

[
∆
(
f
(
〈La,n+s〉

)
, 〈Um〉

)]
And so by Proposition 3.9 f is a weakly static statistical (k, ε)-ERF, as desired.

Theorem 3.17 allows us to establish the existence of weakly static statistical ERF’s with very
good parameters provided we have good strong extractors. The parameters we seek are achieved
by the strong extractor construction of Guruswami, Umans, and Vadhan [17] stated in Theo-
rem 2.21, which obtains output size m ≥ (1−α)` for any constant α while keeping the seed length
s ≤ log n+O(log (`/ε)). Armed with this strong extractor, let us give an explicit construction of
a weakly static statistical ERF.

Theorem 3.18. For every constant 0 < γ < 1, and for all n and k satisfying k ≤ n and k ∈
ω(log n), there exists a polynomial-time computable weakly static statistical (k, ε)-ERF f : {0, 1}n →
{0, 1}m with m ≥ γk and ε ∈ 2−Ω(k) for sufficiently large n.

Proof. We can invoke Theorem 2.21 with ` = k and ε = 2−αk to get a strong ε-extractor for k-
sources h : {0, 1}s×{0, 1}n−s → {0, 1}m with m ≥ γk and with s ≤ log n+O(log k+αk). We know
then that there is a constant M > 0 such that, for sufficiently large n, s ≤ log n+M(log k + αk).
Setting α = 1/(cM) for a constant c to be determined later and using that k ∈ ω(log n), we obtain
that asymptotically s ≤ 2k/c.

9Recall here that [La,n+s]Li has only one element since Li ⊂ L, and so the notation refers not to the set containing
that element but to the element itself. That is, [La,n+s]Li is the substring of a that corresponds to bits with positions
in Li.



Chapter 3. The RF and ERF Zoo 35

We now apply Theorem 3.17 to find that h is a weakly static statistical ((1 + 2
c )k, 2

−Ω(k))-ERF
from n bits to γk bits for sufficiently large n. We can reparametrize and replace k with k/(1+ 2

c ) to
see that h is a weakly static (k, 2−Ω(k))-ERF with output length kγ/(1+ 2

c ). Choosing γ sufficiently
close to 1 and c sufficiently large, we can make the constant factor in the output size arbitrarily
close to 1, as desired.

The construction of Theorem 3.18 is quite nice: it allows us to get the output size of f to
be any fixed percentage of k that we want, even while keeping ε exponentially small in Ω(k). Is
this the best we can do in terms of output length using strong extractors? The following result of
Radhakrishnan and Ta-Shma [24] will help us show that indeed it is.

Theorem 3.19 (Radhakrishnan and Ta-Shma [24]). Let E : {0, 1}s×{0, 1}n → {0, 1}m be a seeded
ε-extractor for `-sources. Then `+ s−m ≥ 2 log (1/ε)−O(1).

This bound makes some sense—it tells us that any seeded extractor (including any strong
extractor) must have some entropy loss, and that that entropy loss is inversely related to ε. It
means, though, that if we construct a weakly static statistical ERF from a strong extractor for
`-sources with seed length s using Theorem 3.17, there is a constant C > 0 such that we will never
be able to obtain k−m < 2 log (1/ε)+C since the ERF that comes out of the theorem has k ≥ `+s.
This means that if we want to keep ε = 2−Ω(k) then we are limited to k − m ≥ Ω(k). In other
words, the explicit construction given in Theorem 3.18 is in some sense the best result that we
can squeeze out of the reduction of Theorem 3.17 in terms of output length. However, as we have
discussed, this construction does not work for all k. Let us turn now to our second construction,
which trades output length in exchange for requiring less entropy in its input.

The Second Construction: Protecting Fewer Input Bits

Our second construction is the deterministic extractor for (n, k) oblivious bit-fixing sources pre-
sented in Theorem 2.18, which by Proposition 3.8 is a statistical RF. We re-state Theorem 2.18
here and then present a sketch of its proof.

Theorem 3.20 (Restatement of Theorem 2.18). For every k and n satisfying n ≥ k > 0, there
exists a polynomial-time computable deterministic ε-extractor for (n, k) oblivious bit-fixing sources
E : {0, 1}n → {0, 1}m with m ≥ log k/4 and ε ≤ 2−

√
k.

Sketch of Proof. The extractor is actually quite simple: all it does is use the input to take a walk
on a cycle of length ` = d(k1/4), where d(x) is the smallest odd number that is greater than or
equal to x. It is easy to see that the positions of the fixed bits do not affect the random walk
(since we can take the steps in any order); once we see this we can assume that the fixed bits
are all at the beginning of the input, which shows us that their values also do not matter since
they’ll only affect our starting point, which is arbitrary anyway. Therefore we can, without loss of
generality, ignore the fixed bits. What we are left with is the task of bounding the distance from



Chapter 3. The RF and ERF Zoo 36

uniform of the distribution on the vertices of the cycle that arises if we start at an arbitrary vertex
and take k random steps. This explains why we chose the cycle length to be odd: random walks
on even-length cycles do not converge to uniform because with every step they alternate between
even-labeled vertices and odd-labeled vertices.

Bounding the speed of convergence of our random walk to the uniform distribution on the
vertices is a matter of linear algebra: first we can show that if we have a distribution on the
vertices that is δ away from uniform and then take a random step, the resulting distribution is at
most λ(P )δ away from uniform (in terms of L2 distance between distributions) where λ(P ) is the
second-largest eigenvalue of the transition matrix P of the cycle. This allows us to bound the L2

distance from uniform after k steps by λ(P )k. Next, we bound λ(P ) by cos(π/`) (cf. [25]) and show
that cos(π/`) ≤ exp(− π2

2`2
) (cf. [26]).

Finally, we show that bounding the L2-norm of the difference between two distributions by
some A implies that their statistical distance is bounded by 1

2A
√
`. We can then combine this with

our bound of λ(P )k ≤ exp(−π2k
2`2

) to obtain that ε ≤ 1
2k

1
8 exp (−π2

√
k

2 ), which by some algebra and
bounds on ex can be shown to be at most 2−

√
k.

Can we improve on the parameters of these two constructions by constructing a weakly static
statistical ERF that both works for all 0 < k ≤ n and has output size proportional to k? Addressing
this question will be our main goal in Chapter 5, where we will explore in detail whether we can take
an existing (k, ε)-ERF f and make k any smaller while preserving the exposure-resilience properties
of f .

3.4.3 Obtaining Computational RF’s and ERF’s

In the previous section we managed to construct an ERF with some nice parameters. In particular,
the number of “protected” bits k can be almost logarithmic in n and the output length is linearly
related to k. However, we wish to construct ERF’s with arbitrary output lengths! The way we do
this of course is to relax our definition of indistinguishability one more time and resort to pseudo-
random generators (PRG’s). We have already done the hard work of generating a distribution that
is almost uniform. Now all we need to do is apply a PRG to that distribution to get a pseudoran-
dom string of the length that we want. As in the case of linear resilient functions, we can close the
loop by proving that the existence of (k, ε)-ERF’s with output length greater than k implies the
existence of PRG’s. (For the definition of PRG’s, see Section 2.4.)

In the statement of the following proposition we introduce a system of acronyms for referring to
the different types of ERF’s: WSERF means weakly static ERF, WAERF means weakly adaptive
ERF, and so on. We will occasionally use these acronyms for brevity’s sake in the remainder of
this work as well.



Chapter 3. The RF and ERF Zoo 37

Proposition 3.21. Let f : {0, 1}n → {0, 1}m be a statistical (k, ε)-RF (resp. WSERF, WAERF,
SSERF, SAERF) and let G : {0, 1}m → {0, 1}` be an ε′ pseudorandom generator. Then the function
G ◦ f is a computational (k, ε+ ε′)-RF (resp. WSERF, WAERF, SSERF, SAERF).

Proof. In the case that f is a statistical RF the proof is straightforward: for all L ∈
{

n
n−k
}

and a ∈ {0, 1}n−k we know that f(〈La,n〉) ∼=ε 〈Um〉, so since G is deterministic, we have that
G(f(〈La,n〉)) ∼=ε G(〈Um〉) (see Proposition 2.6). Therefore, if some efficient D, together with some
L ∈

{
n

n−k
}

, has advantage greater than ε+ ε′ in distinguishing G(f(〈La,n〉)) from 〈U`〉, then it has
advantage greater than ε′ in distinguishing G(〈Um〉) from 〈U`〉, contradicting that G is an ε′-PRG.

The proof for the ERF’s is similar but requires a few additional steps. We first assume that f
is an SAERF, and let d : {0, 1}n × {0, 1}m →

{
n

n−k
}

be any polynomial-time algorithm that reads
no more than n− k of the bits of its first input parameter. We can modify d so that before doing
anything, it applies G, which is efficient and deterministic, to its second input parameter. The
function f , being an SAERF, is still resistant to this new function, so we may write(

[〈Un〉]d(〈Un〉,G(f(〈Un〉))), f(〈Un〉)
) ∼=ε

(
[〈Un〉]d(〈Un〉,G(〈Um〉)), 〈Um〉

)
Now consider now the following three distributions:

〈Ad〉 =
(
[〈Un〉]d(〈Un〉,G(f(〈Un〉))), G(f(〈Un〉))

)
〈Bd〉 =

(
[〈Un〉]d(〈Un〉,G(〈Um〉), G(〈Um〉)

)
〈Cd〉 =

(
[〈Un〉]d(〈Un〉,〈U`〉), 〈U`〉

)
Since G is deterministic, 〈Ad〉 is a deterministic function of

(
[〈Un〉]d(〈Un〉,G(f(〈Un〉))), f(〈Un〉)

)
and

〈Bd〉 is a deterministic function of
(
[〈Un〉]d(〈Un〉,G(〈Um〉)), 〈Um〉

)
, so we know that 〈Ad〉 ∼=ε 〈Bd〉 by the

exposure-resilient property of f (along with Proposition 2.6). Now suppose for contradiction that
G ◦ f is not a computational SAERF; that is, that some efficient algorithm D with an appropriate
efficient subroutine s : {0, 1}n × {0, 1}m →

{
n

n−k
}

that reads only n − k bits of its first argument
could distinguish between 〈As〉 and 〈Cs〉 with advantage greater than ε+ ε′. From this we see that
D must be able to distinguish between 〈Bs〉 and 〈Cs〉 with advantage greater than ε′.

Since 〈Un〉 is independent of both 〈Um〉 and 〈U`〉, the first component of both 〈Bs〉 and 〈Cs〉
can be replaced with 〈Un−k〉. This is because regardless of which set s chooses, 〈Un〉 restricted to
that set consist of n− k uniformly random bits that are independent of 〈Um〉 and 〈U`〉. This gives
us that D distinguishes between (〈Un−k〉, G(〈Um〉) and (〈Un−k〉, 〈U`〉) with advantage greater than
ε′ and so to distinguish whether a given string z came from G(〈Um〉) or 〈U`〉 with that advantage
we can simply choose r ← 〈Un−k〉 and return D(r, z). We have now contradicted the security of G
as an ε′-PRG.

To obtain this result for the other types of ERF’s, we can simply repeat this argument with
further restrictions on the functions d and s. For example, in the case of SSERF’s, we can stipulate



Chapter 3. The RF and ERF Zoo 38

that d must ignore its first parameter altogether. Thus, we have shown the result in its full
generality.

Thanks to this proposition, we can, using existing PRG constructions (see Theorem 2.25), up-
grade one of our “pet” ERF’s—the weakly static statistical ERF of Theorem 3.18—to a polynomial-
time computable weakly static computational (k, ε)-ERF mapping {0, 1}n to {0, 1}m for any k, n,
and m, provided that k ∈ ω(log n), k ≤ n, n ∈ kO(1) and m ∈ nO(1).

Before we prove the full equivalence between PRG’s, RF’s, and ERF’s, we first cite a result of
Goldreich [27].

Theorem 3.22 (Goldreich[27]). The following two conditions are equivalent:

1. The existence, for all n ∈ N, of an ε-pseudorandom generator from n to `(n) > n bits with ε
negligible in n.10

2. The existence of a pair of polynomial-time constructible ensembles of distributions 〈Xn〉 and
〈Yn〉 such that 〈Xn〉 ∼=c

ε 〈Yn〉 for ε negligible in n but, for some constant c > 0, it holds that
∆(〈Xn〉, 〈Yn〉) ≥ 1/nc for sufficiently large n.11

We are now ready to show that computational RF’s and ERF’s are equivalent to PRG’s from
the point of view of complexity assumptions. This makes sense since a computational ERF with
k = n (that is, when all the input bits are chosen at random and protected) and output length
greater than n is a PRG by definition. What we do here is formalize the idea that since the ERF
works even when some of the bits are revealed, it is strong enough to give a PRG even though its
output may not be longer than its input.

Theorem 3.23. The following are equivalent:

1. There exist functions k(n) ≤ n, `(n) > k(n), and ε(n) negligible in n such that, for all
n ∈ N, there exists a polynomial-time computable function from n bits to `(n) bits that is a
computational:

(a) (k, ε)-RF.

(b) Strongly adaptive (k, ε)-ERF.

(c) Strongly static (k, ε)-ERF.

(d) Weakly adaptive (k, ε)-ERF.

(e) Weakly static (k, ε)-ERF.

2. There exists a function `(n) > n such that, for all n ∈ N, there exists a polynomial-time
computable ε-pseudorandom generator from n bits to `(n) bits with ε negligible in n.

10Recall that ε is negligible in n if and only if for every constant c > 0 we have ε(n) < 1/nc for sufficiently large n.
11See Section 2.2.3 for a definition of polynomial-time constructible ensembles and a discussion of ≈cε and compu-

tational indistinguishability.



Chapter 3. The RF and ERF Zoo 39

Proof. Proposition 3.21, together with the existence of the polynomial-time computable determin-
istic extractors presented in the Preliminaries for (n, k) oblivious bit-fixing sources (i.e. statistical
RF’s) that have error exponential in n, shows that (2)⇒ (1a) and (2)⇒ (1b). By trivial reductions,
(1b)⇒ (1c)⇒ (1e) and (1b)⇒ (1d)⇒ (1e), so we need only show that (1e)⇒ (2).

(1e)⇒ (2): The hypothesis implies the existence, for any L ∈
{

n
n−k
}

, of the pair of polynomial-
time constructible ensembles {([〈Un〉]L, f(〈Un〉)) : n ∈ N} and {([〈Un〉]L, 〈U`〉) : n ∈ N} with
([〈Un〉]L, f(〈Un〉)) ∼=c

ε ([〈Un〉]L, 〈U`〉) for ε negligible in n. However, since all the entropy in the
former distribution comes from 〈Un〉, the size of its support is at most 2n. In contrast, the number
of bits of entropy in the latter distribution is at least n − k + ` > n, so the support of the former
is at most half of the support of the latter, implying that the statistical distance between the two
distributions is always at least 1/2. Since this is a constant, it is more than enough to apply
Theorem 3.22 and deduce the existence of PRG’s.

3.5 References

Perfect RF’s were introduced independently by Chor et al. [23] and Bennett, Brassard, and Robert
[28]. Weakly static ERF’s were introduced by Canetti et al. [9], though they were referred to simply
as ERF’s. Dodis, Sahai, and Smith [21], extended RF’s to the statistical setting and introduced
in the same paper [21] the notion of weakly/strongly adaptive/static statistical ERF’s in terms of
fooling adversaries. The definitions we give of the strongly static, strongly adaptive, and weakly
adaptive ERF’s that state those notions in terms of distributions, however, are original. The
alternate characterization that we present is also original, as is the notion of branching functions.
The secret-sharing scheme application of AONT’s was pointed out in [9] by Canetti et al., who also
sketch the ⇐ direction of Theorem 3.16. Both directions of the theorem are proven by Chor et al.
in [23] using the Vazirani XOR-Lemma. However, our proof of the ⇒ direction, which does not
use the Vazirani XOR-Lemma, is original. AONT’s were introduced by Rivest [29]. Theorem 3.17
was proven in 2001 by Canetti et al. [9], but the proof presented here, which uses our alternate
characterization, is original. The construction of a weakly static computational ERF using a PRG
is presented in the same paper of Canetti et al. [9]; the extension of the idea to RF’s is a well-known
fact about extractors, but its extension to the other types of computational ERF’s is original. The
same is true of Theorem 3.23.



Chapter 4

Relationships Among Resilient and

Exposure-Resilient Functions

Now that we have some intuition for what RF’s and ERF’s are and how they work, it is time to
understand how the different notions of resilience and exposure-resilience relate to one another.
We show in this chapter that in the setting of perfect security all of the notions introduced are
completely equivalent. We then go on to address the statistical case in which, while each notion is
distinct, there are very clear relationships among the different variants. The alternate definitions
developed in Section 3.2 will be instrumental in proving the relationships we posit.

4.1 In a Perfect World...

In the world of perfect ERF’s, things work out as neatly as we could possibly hope: all five types of
functions are the same! This is the reason that it did not matter whether we constructed a perfect
RF or a perfect ERF in Section 3.4.1.

Theorem 4.1. For every function f : {0, 1}n → {0, 1}m, the following are equivalent:

1. f is a perfect k-RF

2. f is a strongly adaptive perfect k-ERF

3. f is a weakly adaptive perfect k-ERF

4. f is a strongly static perfect k-ERF

5. f is a weakly static perfect k-ERF

40



Chapter 4. Relationships Among Resilient and Exposure-Resilient Functions 41

Proof. By trivial reductions we have (2) ⇒ (3) ⇒ (5) as well as (2) ⇒ (4) ⇒ (5). We will prove
the theorem by showing (5)⇒ (1) and (1)⇒ (2).

(5) ⇒ (1): Let us treat f as a weakly static statistical ERF but set ε = 0 and apply our
alternate definition (Proposition 3.9). This gives that for all L ∈

{
n

n−k
}

,

E
a←〈Un−k〉

[∆(f(〈La,n〉), 〈Um〉)] = 0

Of course, since the expression inside the expectation operator is always non-negative, this implies
that ∆(f(〈La,n〉), 〈Um〉) = 0 for all L and a, which is what we desire.

(1)⇒ (2): Similarly, we know by the alternate definition of strongly adaptive statistical ERF’s
(Section 3.2.3) with ε = 0 that it suffices to show that f satisfies the following equation for every
function d : {0, 1}n−k × {0, 1}m →

{
n

n−k
}

that is a branching function in its first parameter:

E
a←〈Un−k〉

 ∑
y∈{0,1}m

∣∣Pr[f(〈d(a, y)a,n〉) = y]− 2−m
∣∣ = 0

But since f is a perfect k-RF and |d(a, y)| = n − k, we have that Pr[f(〈d(a, y)a,n〉) = y] = 2−m

always, which completes the proof.

4.2 The Statistical Setting

The statistical setting is more nuanced than the perfect setting, but is still governed by a great deal
of structure. In this section we will completely state the relationships among the five statistical
varieties of functions that we have introduced thus far. After doing so, we will introduce one more
class of functions—almost perfect resilient functions—that is strictly stronger than each of the five
other types.

Let us first establish some notational conventions: we will write WSERF to denote the set of
triples (f, k, ε) where f is a weakly static statistical (k, ε)-ERF, SAERF to denote the analogous
set for strongly adaptive statistical ERF’s, and so on. Using this notation, we may write, for
instance, SSERF ⊆ WSERF to mean that for all settings of parameters (n,m, k, ε), any function
f that is a strongly static ERF with those parameters is also a weakly static ERF with the same
parameters.

4.2.1 Inclusions

We begin by noting the obvious inclusions: SSERF ⊆ WSERF , SAERF ⊆ WAERF , SAERF ⊆
SSERF , and WAERF ⊆ WSERF . Where does RF fit in? It is clear that if setting the bits of
the input doesn’t help the adversary, then merely accessing them surely won’t, so we know that



Chapter 4. Relationships Among Resilient and Exposure-Resilient Functions 42

RF ⊆ WSERF . However, the reduction is less obvious if we give an adversary adaptive read-only
access to the input of an RF. In fact, the inclusion still holds, and our alternate characterization
makes the reason for this clear.

Lemma 4.2. Let f : {0, 1}n → {0, 1}m be a statistical (k, ε)-RF. Then f is a weakly adaptive
statistical (k, ε)-ERF. That is, RF ⊆ WAERF .

Proof. By the alternate definition of weakly adaptive ERF’s (Proposition 3.11), we need to show
that, for every branching function ϕ : {0, 1}n−k →

{
n

n−k
}

, f satisfies

E
a←〈Un−k〉

[∆(f(〈ϕ(a)a,n〉), 〈Um〉)] ≤ ε

But since f is a statistical (k, ε)-RF, ∆(f(〈ϕ(a)a,n〉), 〈Um〉) ≤ ε always, which implies the result.

Lemma 4.2 holds simply because RF’s extract from all (n, k) oblivious bit-fixing sources, and
even though weakly adaptive ERF’s are a bit trickier than static ones, they still are essentially just
average-case extractors of sorts for (n, k) oblivious bit-fixing sources.

The inclusions we’ve discussed are summarized in Figure 4.1. In the figure, existence of a path
from class A to class B implies that A ⊆ B.

Strongly
Static ERF

Strongly
Adaptive ERF

Weakly
Static ERF

Weakly
Adaptive ERF

Resilient
Function

Figure 4.1: Relationships among statistical RF’s and ERF’s.

Thus far, we have merely proven four trivial inclusions as well as a fifth inclusion that was
similarly simple. Is this really the whole story? In other words, do any of the inclusions not yet
considered (besides the ones implied by Figure 4.1) hold? It turns out that none do, as we show
in the next section by proving that it is impossible to add any arrow with a non-zero rightward or
upward component to Figure 4.1.

4.2.2 Separations and a Preliminary Classification

Our goal in this section will be to prove the necessary separations to show that Figure 4.1 is
“complete” in the sense that A ⊆ B if and only if there is a path in the diagram from A to B.



Chapter 4. Relationships Among Resilient and Exposure-Resilient Functions 43

All of the constructions that we exhibit for our separations are polynomial-time computable, ruling
out the possibility that the separations do not hold when we restrict our classes to contain only
polynomial-time computable functions.

Three Separations

We begin by showing that SSERF *WAERF with a simple construction: our function will return
the exclusive-or of approximately half of its input bits, but it will use a signal bit at the end of its
input to decide exactly which half of the bits it will use. This offers no help to the strongly static
adversary even if that adversary is given access to all but two of the input bits, but it is enough to
give a weakly adaptive adversary considerable advantage even for k as large as (n− 1)/2.

Lemma 4.3. For every odd n ≥ 3, there exists a function f : {0, 1}n → {0, 1} that is polynomial-
time computable and is a strongly static statistical (2, 1/4)-ERF but not a weakly adaptive statistical
(k, ε)-ERF for any k ≤ (n− 1)/2 and ε < 1/2.

Proof. For odd n, define f : {0, 1}n → {0, 1} as follows: Let S = [n−1
2 ], and let T = {n+1

2 , . . . , n−1}
(each of these sets is of size n−1

2 ). On an input w ∈ {0, 1}n, check if wn = 0. If so, return the
exclusive-or of the bits of [w]S . Otherwise return the exclusive-or of the bits of [w]T .

Let k ≤ n−1
2 . The function f is not a weakly adaptive statistical (k, ε)-ERF for any ε < 1/2,

because given access to a randomly chosen input r ← 〈Un〉, an adaptive adversary can request [r]n,
use that knowledge to request either [r]S or [r]T , and then compute f with complete accuracy,
giving it an advantage of 1/2 in distinguishing f(r) from a uniformly random bit.

We now prove, on the other hand, that f is a strongly static statistical (2, ε)-ERF for any
ε ≥ 1/4. For β ∈ {0, 1}, let Lβ be the set that the (strong) adversary chooses to expose if it
receives β as the challenge; that is, β is the one-bit-long string for which the adversary is trying
to distinguish whether it came from f(〈Un〉) or 〈Um〉. The alternate characterization of strongly
static statistical ERF’s (Proposition 3.12) gives that we need f to satisfy the following equation.
(We’ve used linearity of expectation to switch the expectation and the sum.)

1
2

∑
β∈{0,1}

[
E

a←{0,1}n−2

∣∣∣∣Pr[f(〈La,nβ 〉) = β]− 1
2

∣∣∣∣] ≤ ε (4.1)

But this is easy to bound:
∣∣∣Pr[f(〈La,nβ 〉) = β]− 1

2

∣∣∣ is equal to 0 unless either S ⊂ Lβ or T ⊂ Lβ,

so we may assume without loss of generality that S ⊂ Lβ. This leaves n−1
2 − 1 more bits for us to

put in Lβ. Including in Lβ any bits from T without including all of T will produce a distribution
f(〈La,nβ 〉) that is identical to the one produced when Lβ includes no bits from T . This is because
the output of f , if it uses any bits in T , will take the exclusive-or of all the bits in T . However,



Chapter 4. Relationships Among Resilient and Exposure-Resilient Functions 44

there is no way to include all of the bits of T in Lβ since the adversary can only choose n−1
2 − 1

more bits, so we may assume without loss of generality that Lβ = [n]− {n− 1, n− 2}.

In this case, for all values of a whose last bit is 0, we have that f(〈La,nβ 〉) is a degenerate

distribution on either {0} or {1}; either way,
∣∣∣Pr[f(〈La,nβ 〉) = β]− 1

2

∣∣∣ = 1
2 . For the values of a

whose last bit is 1, f(〈La,nβ 〉) is a uniformly random bit, and so
∣∣∣Pr[f(〈La,nβ 〉) = β]− 1

2

∣∣∣ = 0. Thus,

the expectation over a of
∣∣∣Pr[f(〈La,nβ 〉) = β]− 1

2

∣∣∣ is 1/4, implying that Equation 4.1 holds for any
ε ≥ 1/4, as claimed.

This result is useful for our project, but we need more. The following lemma will establish
that RF * SSERF . The function we build here essentially uses the second part of its input to
choose a subset S of the bits from the first part of the input and computes the exclusive-or of the
bits in S. It then outputs a description of S along with the result of the exclusive-or computation.
Any strong adversary will know from the output which subset of the input bits it should request
in order to calculate f , and so f will fail to be a strongly static ERF. But why is the resultant
function an RF? The reason is that we don’t take the second part of the input as it is in order
to decide which bits from the first part to include in the set S; instead, we first apply a resilient
function to the second part, thus obfuscating the information required to bias the output of the
function. This technique gives us an exponential separation in the error parameter ε.

Lemma 4.4. For every constant 0 < γ < 1/2 and for infinitely many n ∈ N, there exists a
polynomial-time computable function f : {0, 1}n → {0, 1}m and a function 0 < k ≤ n such that f is
a statistical

(
k, 2−Ω(nγ)

)
-RF but, for any ε < 1/4− 2−Ω(nγ), f fails to be a strongly static statistical

(k, ε)-ERF.

Proof. This takes some work to show, so we will explicitly split our proof into three parts. We will
first state our definition of f (Part 1), then prove that f fails to be a strongly static statistical ERF
(Part 2), then prove that it is a statistical RF (Part 3),

Part 1. Definition of f .
Using Theorem 2.15 (construction of a deterministic extractor for oblivious bit-fixing sources) and
Proposition 3.8 (alternate characterization of statistical RF’s), we have for all n′ ∈ N a polynomial-
time computable statistical (k′, ε′)-RF f ′ with the following parameters:

1. Input length: n′

2. Output length: m′ = n′/2− n′1/2+γ

3. Protected bits: k′ = n′/2

4. Error: ε′ ∈ 2−Ω(n′γ)

We now define f as follows: Given an input w ∈ {0, 1}m′+n′ , split w into its first m′ bits (call
these w1) and its remaining n′ bits (call these w2). Apply f ′ to w2 to obtain a string s ∈ {0, 1}m′ .



Chapter 4. Relationships Among Resilient and Exposure-Resilient Functions 45

Interpret s as a subset S ⊆ [m′] by including the i-th element of [m′] in S if and only if the i-th
bit of s is 1. Set the output of f to be (s,

⊕
S) ∈ {0, 1}m′+1 where

⊕
S denotes the exclusive-or

of the bits of [w1]S .

We have defined f only for input lengths of the form m′ + n′ = 3n′/2− n′1/2+γ . On inputs of
this length, which we write below as functions of n′, f has the following parameters:

1. Input length: n(n′) = 3n′/2− n′1/2+γ

2. Output length: m(n′) = m′(n′) + 1 = n′/2− n′1/2+γ + 1

3. Protected bits: we will use k(n′) = n− (m(n′)− 1)/2

For the remainder of the proof, we suppress the parametrization by n′.

Part 2. f fails to be a strongly static statistical (k, ε)-ERF with ε < 1/4 − 2−Ω(nγ) for infinitely
many n.
Let n = m′ + n′ be the length of an input. In this case, an adversary with access to (s,

⊕
S) can

use s to request the set S of the input bits and calculate
⊕
S, thus giving it advantage of 1/2 in

distinguishing between f(〈Un〉) and 〈Um′+1〉. However, S is a subset of [m′] = [m − 1], and the
adversary can only do this if |S| ≤ (m − 1)/2 since otherwise it would have to request too many
bits. Fortunately, the probability of a randomly chosen subset of [m− 1] having at most (m− 1)/2
elements is at least 1/2 since the number of subsets of size i equals the number of subsets of size
m − 1 − i. Furthermore, f ′, which calculates S, carries the uniform distribution to a distribution
that is ε′-close to uniform. Therefore, the adversary will be able to request all the bits of S at least
a 1/2 − ε′ fraction of the time. Noting that n,m ∈ O(n′), and that therefore ε′ ∈ 2−Ω(nγ), we see
that an adversary can always gain an advantage of at least (1/2− ε′)/2 ≥ 1/4− 2−Ω(nγ).

Part 3. f is a statistical
(
k, 2−Ω(nγ)

)
-RF for sufficiently large n

The intuition here is that since no adversary can set enough bits to bias f ′, no adversary can get
much information about S and therefore the output of f will appear random. Let us write the
argument rigorously.

Let n = m′ + n′ be the length of an input. Now fix any L ∈
{

n
n−k
}

and a ∈ {0, 1}n−k

and let L1, L2 ⊂ [n] and a1, a2 ∈ {0, 1}∗ be the unique pair of sets and pair of strings such that
[La,n][m′] = La1,m′

1 and [La,n][n′]+m′ = La2,n′

2 . We will exploit the fact that our statistical distance
measure ∆ obeys the triangle inequality (see Lemma 2.6 from Chapter 1) to bound the distance
between f(〈La,n〉) and 〈Um′+1〉. We do this by bounding

ρ = ∆
(
f(〈La,n〉),

(
f ′(〈La2,n′

2 〉), 〈U1〉
))

and
δ = ∆

((
f ′(〈La2,n′

2 〉), 〈U1〉
)
, 〈Um′+1〉

)
= ∆

(
f ′(〈La2,n′

2 〉), 〈Um′〉
)



Chapter 4. Relationships Among Resilient and Exposure-Resilient Functions 46

Bounding δ is easy: since n − k ≤ m′/2, we can assume |L| ≤ m′/2 < n′/2, implying that
|L2| < n′/2. Since f ′ is a statistical (n′/2, ε′)-RF, this gives that f ′(〈La2,n′

2 〉) ∼=ε′ 〈Um′〉, meaning
that δ ≤ ε′.

We now bound ρ: For w ∈ {0, 1}m′ , let Pw = Pr[f ′(〈La2,n′

2 〉) = w] and let W denote the subset
of [m′] that corresponds to w. Lemma 2.6 from Chapter 1, together with the fact that f ′(〈La2,n′

2 〉)
is the first m′ bits of f(〈La,n〉), allows us to write:

ρ = E
w←f ′(〈La2,n

′
2 〉)

[
∆

(⊕
i∈W

[〈La1,m′

1 〉]i, 〈U1〉

)]

=
∑

w∈{0,1}m′
Pw ·

∣∣∣∣∣Pr

[⊕
i∈W

[〈La1,m′

1 〉]i = 0

]
− 1

2

∣∣∣∣∣ (4.2)

Note that in the second line we compute ∆ without summing over β ∈ {0, 1} and multiplying by
1/2. This is because the summand would be the same for β = 0 and β = 1. Note further that
if W is contained in L1 then

⊕
i∈W [〈La1,m′

1 〉]i is the exclusive-or of bits that are all fixed, so it is
a degenerate distribution. On the other hand, if W is not contained in L1, some of the bits in
[〈La1,m′

1 〉]W will be uniformly random and, consequently,
⊕

i∈W [〈La1,m′

1 〉]i will be uniformly random
as well. Thus, the summand in Equation 4.2 is equal to 1/2 for W ⊂ L1 and 0 otherwise. How
many strings w give W ⊂ L1? One for each subset of L1; that is, 2|L1| ≤ 2n−k < 2m

′/2 strings.
Letting B denote this set of “bad” strings w that give W ⊂ L1, we can re-write Equation 4.2 as
follows.

ρ =
∑
w∈B

Pw ·
∣∣∣∣Pr
[
⊕i∈W [〈La1,m′

1 〉]i = 0
]
− 1

2

∣∣∣∣
=

∑
w∈B

Pw ·
1
2

<
1
2

Pr
[
f ′(〈La2,n′

2 〉) ∈ B
]

<
1
2
·

(
2m
′/2

2m′
+ ε′

)
(4.3)

= 2−m
′/2 +

ε′

2

Where line 4.3 follows from the fact that f ′(〈La2,n′

2 〉) ∼=ε′ 〈Um′〉.

Having bounded ρ, we can now finally bound ∆(f(〈La,n〉), 〈Um′+1〉), the distance of interest:

∆(f(〈La,n〉), 〈Um′+1〉) ≤ δ + ρ

< ε′ +
(

2−m
′/2 +

ε′

2

)
=

3
2
· ε′ + 2−m

′/2



Chapter 4. Relationships Among Resilient and Exposure-Resilient Functions 47

Recalling that ε′ ∈ 2−Ω(nγ) and that m′(n′) ∈ Ω(n(n′)) ⊂ Ω(n(n′)γ), we see that we have indeed
shown that f is a statistical (k, ε)-RF with ε ∈ 2−Ω(nγ).

The last lemma we will need is the separation SAERF * RF , which is a strengthening of
the converse of Lemma 4.4. In this construction, we take a perfectly good SAERF (which may
very well also be an RF) and “sabotage” its worst-case behavior without hurting its average-case
behavior too much. Recall that we showed in Section 3.2 that RF’s require good wost-case behavior
while ERF’s require only good average-case behavior. By this intuition our modified function will
no longer be resilient; on the other hand, since we will not have affected the original function’s
average-case behavior too much, it will remain a strongly adaptive statistical ERF even after our
modification. As in the previous lemma, this achieves a separation that is exponential in terms of
the error parameter ε.

Lemma 4.5. Every strongly adaptive statistical (k, ε′)-ERF f ′ : {0, 1}n → {0, 1}m can be modified
in polynomial time to give a function f : {0, 1}n → {0, 1}m that is a strongly adaptive statistical
(k, ε)-ERF for ε = ε′ + 2−k but not a statistical (k, ε)-RF for any ε < 1− 2−m.

Proof. Let f ′ be any strongly adaptive statistical (k, ε′)-ERF. We build f as follows: let S = [n−k];
now, on an input w ∈ {0, 1}n, we set f(w) = f ′(w) unless [w]S = 0n−k in which case we set
f(w) = 0m.

f is not a statistical (k, ε)-RF for any ε < 1 − 2−m because f(〈S0n−k,n〉) is the degenerate
distribution on {0m} and so is at a distance of 1− 2−m from 〈Um〉.

On the other hand, f is a strongly adaptive statistical (k, ε)-ERF for ε = ε′ + 2−k for the
following reason: fix any function d : {0, 1}n×{0, 1}m →

{
n

n−k
}

that reads at most n− k bits of its
first input, and define the following two distributions:

A(〈Un〉) :=
(
[〈Un〉]d(〈Un,〉f(〈Un〉)), f(〈Un〉)

)
B(〈Un〉) :=

(
[〈Un〉]d(〈Un,〉f ′(〈Un〉)), f

′(〈Un〉)
)

As our notation suggests, A(〈Un〉) and B(〈Un〉) are both ultimately just deterministic functions
of 〈Un〉, and they agree whenever f and f ′ agree. In particular, A and B are exactly identical on
{0, 1}n − S0n−k,n. We can conclude from this that A(〈Un〉) and B(〈Un〉) will be as different as
possible if A(〈S0n−k,n〉) and B(〈S0n−k,n〉) are each equal to a different one-element set. But even if
this is true, the distance between A(〈Un〉) and B(〈Un〉) is at most 2−k. Now since f ′ is a strongly
adaptive statistical (k, ε′)-ERF, B(〈Un〉) ∼=ε′ 〈Um〉 and so by the triangle inequality for ∆ we have
that ∆(A(〈Un〉), 〈Um〉) ≤ ε′ + 2−k, completing the proof.

Remark 4.6. This establishes the separation that we desire only provided that we prove that
there exists a strongly adaptive statistical ERF f ′ (for infinitely many n of course). Further, the
separation is for polynomial-time computable functions and is exponential, as claimed, provided
that f ′ is polynomial-time computable and has an exponentially small error parameter ε′. We will
construct such a function in Section 4.2.3 after we are finished with our classification.



Chapter 4. Relationships Among Resilient and Exposure-Resilient Functions 48

Beginning the Classification

It is straightforward to verify that the three separations above are all we need to prove that
Figure 4.1 is complete and that indeed no other arrows can be drawn on it.

Theorem 4.7. Figure 4.1 is complete in the sense that a path from A to B exists if and only if
A ⊆ B.

Proof. The existence of any arrow beyond the ones on the diagram contradicts at least one of
Lemmas 4.3, 4.4, and 4.5.

Theorem 4.7 finally gives us the reason that we could not characterize the strong ERF’s in
terms of average-case randomness extraction from (n, k) oblivious bit-fixing sources in Section 3.2:
if we managed to define the strong ERF’s in terms of their ability to extract from some family of
(n, k) oblivious bit-fixing sources, then every RF would, by virtue of its ability to extract from all
(n, k) OBFS’s, become a strong ERF as well, but we now know that this would be a contradiction!

The classification at which we have arrived is quite pleasing. However, there is something
unsettling about it: it has left us with no “strongest” object, for RF’s are not stronger than
SAERF’s and the latter are not stronger than the former either. Is there a class of functions that
we can put at the top of our hierarchy?

4.2.3 Almost-Perfect RF’s and Classifying the Entire Zoo

As the title of this section may have betrayed, the answer to the question we have posed is “yes”.
But how can we gain intuition about how to find the family of functions that we seek? As we
noted in Remark 3.13 following our alternate characterization of RF’s and ERF’s, the resilient
functions are a sort of worst-case analogue of the weak ERF’s, so perhaps we can come up with a
corresponding worst-case analogue for the strong ERF’s. This would need to be a sub-class of the
RF’s (since strong ERF’s are a subclass of weak ERF’s) that is a sub-class of the strongly adaptive
ERF’s in the same way that the RF’s are a sub-class of the weakly adaptive ERF’s.

In the world of the weak ERF’s, the expression that we average in the alternate definitions
of Section 3.2 is ∆(f(〈La,n〉), 〈Um〉), and we average over different types of sets L and strings a
depending on whether f is an adaptive or static weak ERF. To turn such a function into an RF
we simply stipulate that it satisfy this condition for every set L and string a. Let us apply this
reasoning to our average-case definition of the strong ERF’s.

Our alternate characterizations of static and adaptive strong ERF’s both involve averaging
expressions of the form ∑

z∈{0,1}m

∣∣Pr[f(〈Lz,aa,n〉) = z]− 2−m
∣∣ (4.4)



Chapter 4. Relationships Among Resilient and Exposure-Resilient Functions 49

where we average over a ∈ {0, 1}n−k, and various families of sets depending on z and possibly a

take the place of Lz,a. When attempting to turn this into a worst-case condition, we could consider
simply requiring that Expression (4.4) be at most ε, but then it is not obvious that such a function
would be a statistical RF, which is what we seek from the definition we are trying to formulate.
However, if we strengthen our demands by requiring that the summand in Expression (4.4) be
at most ε/2m for all L, z, and a, we ensure that the resultant function will be an RF because
substituting any fixed L for Lz,a in Expression (4.4) just turns the expression into ∆(f(La,n), 〈Um〉),
and if its summand is at most ε/2m then the expression itself (which sums over 2m elements) is at
most ε.

The object we have arrived at is called an almost-perfect resilient function (APRF) because
beyond asking that f(〈La,n〉) be ε-close to uniform for all L and a, we’ve essentially asked that
the deviation from uniform be very evenly distributed (and therefore very small) across all possible
z ∈ {0, 1}m. Let us formalize our above line of reasoning by giving a definition of APRF’s and
proving that APRF ⊆ RF and APRF ⊆ SAERF .

Definition 4.8 (Almost-Perfect Resilient Function). A function f : {0, 1}n → {0, 1}m is called a
(k, ε)-APRF if and only if for every L ∈

{
n

n−k
}

, a ∈ {0, 1}n−k, and z ∈ {0, 1}m, we have:

∣∣Pr[f(〈La,n〉) = z]− 2−m
∣∣ ≤ ε

2m

Lemma 4.9. Let f : {0, 1}n → {0, 1}m be a (k, ε)-APRF. Then f is both a statistical (k, ε/2)-RF
and a strongly adaptive statistical (k, ε/2)-ERF.

Proof. f is a statistical (k, ε/2)-RF because

∆ (f(〈La,n〉), 〈Um〉) =
1
2

∑
z∈{0,1}m

∣∣∣∣Pr [f(〈La,n〉) = z]− 1
2m

∣∣∣∣
≤ 1

2

∑
z∈{0,1}m

ε

2m

=
ε

2

To show that f is a strongly adaptive statistical (k, ε/2)-ERF, we proceed in the same way
that we showed that every RF is a weakly adaptive ERF (Lemma 4.2). We know by the adaptive
variant of the definition of strongly adaptive ERF’s (Proposition 3.12) that it suffices to show that
for every function d : {0, 1}n−k×{0, 1}m →

{
n

n−k
}

that is a branching function in its first argument,
f satisfies:

1
2

E
a←〈Un−k〉

 ∑
z∈{0,1}m

∣∣Pr[f(〈d(a, z)a,n〉) = z]− 2−m
∣∣ ≤ ε

From here, simply plugging in |Pr[f(〈d(a, z)a,n〉) = z]− 2−m| ≤ ε/2m gives that the inequality holds
as desired.



Chapter 4. Relationships Among Resilient and Exposure-Resilient Functions 50

In this lemma, as with Lemma 4.2, our alternate characterization makes plain the reason that
the reductions from resilience to exposure-resilience are true: both cases are simply a matter of
worst-case performance implying average-case performance.

The Complete Map of the RF and ERF Zoo

We are now in a position to state the whole story: an extension of Theorem 4.7 that includes the
“strongest object” in our zoo.

Strongly
Static ERF

Strongly
Adaptive ERF

Weakly
Static ERF

Weakly
Adaptive ERF

Resilient
Function

Almost
Perfect RF

Figure 4.2: Relationships among statistical RF’s and ERF’s, including APRF’s.

Theorem 4.10. Figure 4.2 is a complete classification of the (statistical) RF’s and ERF’s in the
sense that a path from A to B exists if and only if A ⊆ B.

Proof. The separation between RF and SAERF , together with Lemma 4.9, suffices to extend
Theorem 4.7 to include Figure 4.2

We have successfully organized our zoo into something quite neat: all of the “perfect” animals
turned out to be perfectly identical, and the statistical ones behave according to a very nice hier-
archy. We should be careful to note, however, that our separations only hold if we force k and ε

to remain fixed for any potential reduction, and they do not necessarily hold when we remove this
condition: for example, every (k, ε)-RF is trivially a (k, 2mε)-APRF. This may seem unimportant
because of the exponential factor in the error term, but in fact it is the key to constructing a usable
APRF, as we see in the next section.

Real, Live APRF’s

We have found in APRF’s a good candidate for a “strongest” class of functions to include in our
classification, but we have not yet shown that any APRF’s even exist!



Chapter 4. Relationships Among Resilient and Exposure-Resilient Functions 51

The construction of an APRF offers us a few rewards at this point. First of all, our classification
shows that constructing an APRF would give us an SAERF, which would make concrete the
strong separation of Lemma 4.5 (see Remark 4.6). But in addition to giving us a separation
result, constructing APRF’s is actually the best currently known way of constructing SAERF’s,
and therefore adaptive all-or-nothing transforms (see Section 3.3.4). For this second reason, APRF’s
are of extreme practical importance as well as theoretical interest.

Dodis, Sahai, and Smith [21] present a probabilistic construction of (k, ε)-APRF’s with very
good parameters (m = k − 2 log (1/ε) − O(log n)) by choosing a random function out of a t-wise
independent hash family (such as, for example, the set of polynomials of degree t − 1 over F2n).1

This construction is efficiently computable and almost always yields a good APRF, but it is not
uniform: a different function from a different family needs to be chosen and stored for every input-
length n. Thus, we cannot use it to construct a polynomial-time computable APRF for infinitely
many n.

However, as we hinted in the previous section, it actually turns out that there are deterministic
extractors for oblivious bit-fixing sources that are good enough to be used directly as APRF’s. One
of these is the extractor of Kamp and Zuckerman [12] cited in Theorem 2.17 of the preliminaries.
This elegant construction uses special graphs called expander graphs that are well-connected despite
having relatively few edges. Because of this connectivity, a random walk on an expander graph
with 2m vertices is likely to yield a nearly random endpoint (that can be interpreted as an element
of {0, 1}m), just as a random walk on the complete graph on 2m vertices would give a completely
random endpoint. For this reason, randomness extractors are strongly related to expanders and
there is a large body of literature that states and exploits connections between these objects.

Kamp and Zuckerman [12] use a connection similar (but not identical) to this one to construct
a deterministic extractor by showing a way to convert an oblivious bit-fixing source into a source
that is “good enough” to serve as the source of randomness for a random walk on an expander
graph.2 This yields, as stated in Theorem 2.17, a deterministic extractor for (n, k) oblivious bit-
fixing sources from n bits to Ω(n2γ) bits with k = nγ+1/2 and ε < 2−cm (for any c > 1 and γ ≤ 1/2),
which as we mentioned above is trivially an APRF with ε = 2−(c−1)m. The result is the following
theorem, which asserts the existence of APRF’s for k �

√
n.

Theorem 4.11 (Kamp and Zuckerman [12]). For every constant 0 < γ ≤ 1/2 and every constant
c > 0, and for every n and k satisfying n ≥ k ≥ n1/2+γ, there exists a polynomial-time computable
(k, ε)-APRF f : {0, 1}n → {0, 1}m with m ∈ Ω(n2γ) and ε ≤ 2−cm.

1A t-wise independent hash family is a collection of functions such that, for every t distinct inputs {x1, . . . , xt},
the t random variables produced by choosing a random function from the family and applying it to the xi behave
like uniformly distributed, independent random variables.

2The connection they exploit is a new one because their walk is not a random walk but rather a walk with some
random steps and some steps that are biased ahead of time. (The latter steps arise from the fixed bits of the source.)



Chapter 4. Relationships Among Resilient and Exposure-Resilient Functions 52

4.3 References

It is doubtful that the conclusions of Theorem 4.1 escaped the notice of other authors (and in
particular Dodis, Sahai, and Smith mention a few of them in [21]). However, its explicit statement
is original, as is the given proof which uses the original alternate characterizations of Section 3.2.
Dodis, Sahai, and Smith (also in [21]) state the complete classification of ERF’s, RF’s, and APRF’s
and so none of the inclusions and separations proven in the statistical setting are original results.
However, the proofs of all the inclusions and separations except for that of Lemma 4.4 are original
either in that the lemmas’ statements elsewhere are given less explicitly and without proof, or that
the proofs use the alternate characterizations from Section 3.2, or both. In the case of Lemma 4.4,
we have filled in the gaps of a proof sketch and made the statement of the lemma more precise in
terms of the parameters given. APRF’s were introduced by Kurosawa, Johansson, and Stinson [10]
prior to their use in [21].



Chapter 5

Resilience Amplification

In this chapter we consider a function f : {0, 1}n → {0, 1}m that is a (k, ε)-RF or ERF of some sort
and ask whether its resilience can somehow be “amplified”. We first define what we might mean by
this, then focus on one specific interpretation (increasing f ’s input length without changing k) in
the case where f is a weakly static ERF. We define a natural class of candidate functions—lossless
condensers for WSERF’s—for achieving this form of amplification and then rule out their existence
in both the perfect and statistical settings.

In our analysis, we will make heavy use of the convention that if 〈X〉 is a flat distribution then
X is implicitly defined to be its support. Similarly, if X is a set then 〈X〉 is implicitly defined to
be the uniform distribution on X. (See Section 2.1.2 from the preliminaries.) Our results also use
some basic facts about oblivious bit-fixing sources that are discussed in Appendix B.

5.1 Background and Motivation

Before investigating resilience amplification in earnest, we will first make precise our notion of what
it means in the context of RF’s and ERF’s. After doing so, we will discuss the utility of amplification
techniques as objects of study, mention previous uses of similar concepts, and investigate how we
might apply resilience amplification to weakly static ERF’s.

53



Chapter 5. Resilience Amplification 54

5.1.1 Resilience Amplification and Its Benefits

Consider a (k, ε)-RF or ERF f : {0, 1}n → {0, 1}m. There are two natural ways in which we might
go about improving f that correspond to our two goals in building it:

• We can try to decrease the ratio k/n (the fraction of the input bits that requires protection
in order for f to work).

• We can try to increase m, the number of pseudorandom bits that f outputs.

The existence of a procedure that would achieve either of these two goals would be useful
for two reasons. First, such a procedure might allow us to improve the parameters of existing
constructions. Second, since few bounds on the achievable parameters of RF’s and ERF’s are
known (see the discussion in Section 5.1.3), such a procedure could offer insight into the kinds of
bounds that we can expect to prove about these functions.

5.1.2 Previous Uses of Amplification Procedures

Both of the aforementioned amplification procedures have proven fruitful when applied to other
pseudorandom objects. In particular, they have significantly improved constructions of both pseu-
dorandom generators and seeded randomness extractors.

Lengthening Output: PRG’s

The discovery of a general procedure that takes a PRG from n bits to n + 1 bits and extends its
output length to any polynomial in n (see Goldreich [19]) showed that stretching randomness by
just one bit was as hard as stretching it into polynomially many bits. This amplification method
has resulted in polynomial-time computable constructions of many types of PRG’s (including the
PRG construction of Hastad et al. [18] cited in Theorem 2.25) that achieve polynomial stretch.

Handling Lower Quality Randomness: Seeded Extractors

As is the case with RF’s and ERF’s, one of the parameters of interest for a seeded randomness
extractor for k-sources E : {0, 1}s×{0, 1}n → {0, 1}m is k/n, the so-called min-entropy rate that E
can handle. This parameter is important because the higher the min-entropy rate of a source, the
easier it is to extract randomness from that source. Thus, the construction of good extractors was
made much easier following the introduction and construction of functions that convert a source of
low min-entropy rate into one of high min-entropy rate. Such functions are called condensers and
are formally defined below.



Chapter 5. Resilience Amplification 55

Definition 5.1 (Condenser for Seeded Extractors1). A function C : {0, 1}s × {0, 1}n → {0, 1}m

is a k →ε k
′ condenser for seeded extractors if and only if, for every k-source 〈X〉 on {0, 1}n,

C(〈Us〉, 〈X〉) ≈ε 〈Y 〉 for some k′-source 〈Y 〉.

As we have mentioned before, a result of Radhakrishnan and Ta-Shma [24] shows that con-
densers for seeded extractors with m = k′ (which are just seeded extractors) must suffer a minimum
entropy loss expressed by k+s−m ≥ 2 log (1/ε)+O(1). However, condensers for seeded extractors
with general parameters (i.e. potentially having m > k′) need not have this entropy loss. Con-
densers for seeded extractors that have k′ = k + s and so produce no entropy loss at all are called
lossless condensers for seeded extractors. The construction of lossless condensers for seeded extrac-
tors with good parameters has been crucial to the theory of randomness extractors, yielding the
best known constructions of extractors for sources with very low min-entropy rate (including the
construction of Guruswami, Umans, and Vadhan [17] cited in Theorem 2.21, which is the current
state of the art).

5.1.3 Application to Weakly Static ERF’s

Can we use amplification methods to learn about RF’s and ERF’s? To make this question more
manageable, let us narrow our focus and suppose for the rest of this chapter that the function f

whose properties we are attempting to amplify is a weakly static (perfect, statistical, or computa-
tional) ERF.

An Open Question

Recall that in Section 3.4.2 we presented a weakly static statistical ERF that had essentially optimal
output length (m = γk for any constant 0 < γ < 1) but required the number of protected bits to
be k ∈ ω(log n); we also presented a weakly static statistical ERF that had no restrictions on k but
only achieved output length m = (log k)/4. The fact that no known construction achieves both of
these goals simultaneously suggests that there may be a fundamental trade-off between k/n (the
fraction of bits that require protection) and the output length m. In the perfect setting, we have a
result that indeed describes such a trade-off: Chor et al. [23] show that m ≥ 2 necessitates k ≥ n/3.
However, it is not known whether this sort of trade-off is necessary in the statistical setting.

Currently, the largest value of m for which we have weakly static statistical (k, ε)-ERF’s with
constant k and ε ≤ 1/2 is O(log k), achieved by the aforementioned construction of Theorem 3.20.
Can we achieve m = γk for any constant 0 < γ < 1 in this case, as we do when k ∈ ω(log n),
or is there some threshold below which we simply cannot recoup most of the randomness of the
un-exposed bits of the input? We state this question formally below.

Open Question 5.2. Does there exist, for every constant 0 < γ < 1, a weakly static statistical
(k, ε)-ERF from n bits to m = γk bits with k constant and ε ≤ 1/2?

1In the literature, these are simply called “condensers”.



Chapter 5. Resilience Amplification 56

Note that this question is actually an open one for all of the various statistical ERF’s and RF’s
that we have discussed. In particular, if we replace “weakly static statistical ERF” with “statistical
RF”, we arrive at the simple and fundamental question of whether there is a limit to how well we
can deterministically extract randomness from oblivious bit-fixing sources with a constant number
of random bits.

There are two reasons that we might think that there is a trade-off in the statistical setting.
First of all, it seems difficult to believe that for constant k we can really extract any fixed fraction
of the randomness from an (n, k) oblivious bit-fixing source no matter how much interference we
throw in by making n arbitrarily large.

The second reason first requires a bit of background: Kamp and Zuckerman [12] consider a
generalization of the problem of randomness extraction from oblivious bit-fixing sources to sources
called oblivious symbol -fixing sources. Symbol-fixing sources are a generalization of bit-fixing
sources that, instead of taking values in {0, 1}n, take values in [d]n for some fixed d ≥ 2. In
the case of oblivious symbol-fixing sources with d > 2, a deterministic extractor can be constructed
by using the symbols of the input to take a random walk on a d-regular expander graph.2 Since
random walks on expander graphs converge to the uniform distribution very quickly, this method
yields extractors that do achieve the goal of extracting γk bits for any constant 0 < γ < 1 even
when k is constant.

So what goes wrong when d = 2? The problem is that 2-regular expanders do not exist.
Kamp and Zuckerman [12] give a method of converting a bit-fixing source into an approximation
of a symbol-fixing source with d > 2 and then using the expander graph method described above.
This results in the extractor of Theorem 2.17 (discussed in Section 4.2.3), but it requires a lot of
randomness (specifically, k �

√
n). The alternative is to take a walk on the only reasonable 2-

regular graph possible: a cycle. Doing so produces the previously mentioned extractor (and weakly
static ERF) of Theorem 3.20, which does work for all k but has output length only O(log k). Here
lies the second reason that the answer to Open Question 5.2 may be negative: perhaps the basic
fact that expanders of degree two do not exist is actually related to the fundamental limitations of
weakly static ERF’s.

The Search for an Answer: Attempting to Protect Fewer Bits of the Input

Answering Open Question 5.2 would provide insight into a basic fact about extraction from oblivious
bit-fixing sources, and either of the two types of resilience amplification that we have outlined could
help us settle it. We could apply a method of increasing output length to the ERF that works for
all k but has m = (log k)/4 (Theorem 3.20) until it has a better output length; or we could apply
a method of decreasing k/n to the ERF that has m = γk for any constant 0 < γ < 1 but requires
k ∈ ω(log n) (Theorem 3.18) until it requires very few protected bits. We will focus on finding a
way to decrease the number of input bits requiring protection.

2Recall that an expander graph is a graph that is efficiently constructible yet highly connected despite having few
edges.



Chapter 5. Resilience Amplification 57

Since ERF’s are analogous in many ways to randomness extractors, we ask whether condensers
for seeded extractors, which have become a key element of many extractor constructions, have
analogues for exposure-resilient functions. If such analogues can be constructed, they could settle
Open Question 5.2 in the affirmative; on the other hand, if they do not exist, we can interpret this
as perhaps pointing to the conclusion that the answer to Open Question 5.2 is a negative one.

In the next section, we will pursue this idea by adapting the definition of condensers for
seeded extractors to the setting of weakly static ERF’s, calling the resulting objects condensers for
WSERF’s. We will then proceed to show in the rest of the chapter that condensers for WSERF’s
do not exist for any non-trivial settings of parameters, thus ruling out this natural approach to
amplifying exposure-resilience and suggesting that the answer to Open Question 5.2 may indeed
by negative.

All of our results will also apply to the setting of perfect RF’s and ERF’s since the results all
hold for ε = 0.

5.2 The Definition of Lossless Condensers for WSERF’s

Having seen what developing a theory of condensers for WSERF’s can offer us, we now begin our
investigation in depth. Taking our cue from the salient role of lossless condensers in the randomness
extractor literature, we will focus on lossless condensers for WSERF’s.

Let us try to deduce properties that would be natural to require of a lossless condenser for
WSERF’s C : {0, 1}n′ → {0, 1}n. To simplify our discussion as we do this, we will assume that
n′ = n+ 1. What properties ensure that, for any statistical (k, ε)-WSERF f : {0, 1}n → {0, 1}m,
the function f ◦ C : {0, 1}n+1 → {0, 1}m will be a statistical (k, ε+ δ)-WSERF?

We turn again to our alternate characterization from Section 3.2. We know that a statistical
(k, ε)-WSERF f extracts on average from sets of sources of the form FL = {〈La,n〉 : a ∈ {0, 1}n−k}
for all L ∈

{
n

n−k
}

. We also see that for f ◦C to be a weakly static ERF it must extract from sets of
sources of the form GL = {〈La,n+1〉 : a ∈ {0, 1}n+1−k} for all L ∈

{
n+1

n+1−k
}

. Imagining for a second
that the error parameter δ of C is 0, a natural way to build a function C will suffice is to ask that
for every L ∈

{
n+1

n+1−k
}

there exist some S ∈
{

n
n−k
}

such that:

• C maps each of the 2n+1−k sources in GL bijectively onto some source in FS .

• Each of the 2n−k sources in FS is mapped to in this way by exactly two sources in GL.

If C satisfies these conditions then we can easily deduce that f ◦ C is a weakly static statistical
(k, ε)-ERF because an expectation over a source drawn uniformly at random from GL will, after
applying C, become an expectation over a source drawn uniformly at random from FS .



Chapter 5. Resilience Amplification 58

Of course, we do not actually want to limit ourselves to δ = 0, so let us add that instead of
mapping each source from GL bijectively onto a source in FS , C need only map the former to within
some statistical distance δ of the latter. These properties yield the definition below (generalized to
input values beyond n+ 1) of lossless condensers for WSERF’s.

Definition 5.3 (Lossless Condenser for WSERF’s). A function C : {0, 1}n′ → {0, 1}n (where
n′ > n) is a lossless (k, δ)-condenser for WSERF’s if and only if there exists a pair of functions
ϕ :
{

n′

n′−k
}
→
{

n
n−k
}

and Ψ :
{

n′

n′−k
}
× {0, 1}n′−k → {0, 1}n−k with the following properties:

1. For every L ∈
{

n′

n′−k
}

and every a ∈ {0, 1}n′−k, we have C(〈La,n′〉) ∼=δ 〈ϕ(L)Ψ(L,a),n〉.

2. For every L ∈
{

n′

n′−k
}

, the function Ψ(L,−) is regular in its second parameter.3

The function ϕ is called the set function of C and the function Ψ is called its bit function.

Our discussion above proves the following proposition, which formalizes the capability of lossless
condensers for WSERF’s to amplify resilience.

Proposition 5.4. Let f : {0, 1}n → {0, 1}m be a statistical (resp. computational) (k, ε)-WSERF
and let C : {0, 1}n′ → {0, 1}n be a lossless (k, δ)-condenser for WSERF’s. Then the function
f ◦ C : {0, 1}n′ → {0, 1}m is a statistical (resp. computational) (k, ε+ δ)-WSERF.4

Definition 5.3 would be simpler if we knew that the functions ϕ and Ψ are always unique.
Proposition 5.5 below shows that since oblivious bit-fixing sources are statistically far apart, this is
indeed the case as long as δ < 1/4. In the rest of this chapter we will only be dealing with values of
δ less than 1/4 and so we will treat the set functions and bit functions of our condensers as unique
without explicitly citing this proposition.

Proposition 5.5. Let 〈W 〉 = 〈Sw,n〉 and 〈X〉 = 〈T x,n〉 be two distinct (n, k) oblivious bit-fixing
sources. Let 〈D〉 be any distribution over {0, 1}n. Then for δ < 1/4, we cannot have both 〈D〉 ∼=δ

〈W 〉 and 〈D〉 ∼=δ 〈X〉.

Proof. Proposition B.2 (see Appendix B) tells us that ∆(〈W 〉, 〈X〉) ≥ 1/2. Supposing that 〈D〉 is
δ-close to both 〈W 〉 and 〈X〉, we can use the triangle inequality for ∆ (Lemma 2.6 from the our
preliminaries) to see that 2δ ≥ 1/2, implying that δ ≥ 1/4.

The definition of lossless condensers for WSERF’s has analogues for weakly adaptive statistical
ERF’s as well as statistical RF’s. However, we do not state them here since the results of the rest
of this chapter apply only to lossless condensers for WSERF’s. Additionally, in the remainder of
this chapter we will refer to lossless condensers for WSERF simply as “lossless condensers” except
in statements of lemmas and theorems.

3Recall that a regular function is a function that maps the same number of elements of its domain to each element
of its target space.

4Note that this proposition encompasses the perfect case as well since we can set ε = δ = 0.



Chapter 5. Resilience Amplification 59

5.3 Impossibility in the Perfect Setting

For a lossless (k, δ)-condenser C : {0, 1}n′ → {0, 1}n to successfully amplify the resilience of a
perfect k-RF, we need δ = 0. However, it is simple to show that this is impossible to have for all
0 < k < n < n′.

Proposition 5.6. The following statements hold for every k ≥ 2:

1. There is no lossless (k, 0)-condenser for WSERF’s C : {0, 1}3k+1 → {0, 1}k.

2. There exists an n ∈ {k, . . . , 3k} such that there is no lossless (k, 0)-condenser for WSERF’s
C : {0, 1}n+1 → {0, 1}n.

Proof. Any lossless (k, 0)-condenser C : {0, 1}3k+1 → {0, 1}k is a perfect k-RF, and so its existence
directly contradicts the previously discussed result of Chor et al. [23], which states that a perfect
k-RF with more than one output bit must have k equal at least one-third of its input length. This
proves the first statement.

As for the second statement: if for every n ∈ {k, . . . , 3k} there exists a function Cn : {0, 1}n+1 →
{0, 1}n that is a lossless (k, 0)-condenser, then Ck ◦· · ·◦C3k is a lossless (k, 0)-condenser from 3k+1
bits to k bits, which contradicts the first statement.

This impossibility result only partially answers our question though, because for each k it only
gives us certain settings of parameters for which it is impossible to have a lossless condenser. In
the following section we prove a much stronger result for the statistical case that subsumes this
one (by setting ε = 0): that there do not exist lossless condensers for any non-trivial settings of
parameters.

5.4 Impossibility in the Statistical Setting

We now show that for δ less than some fixed constant there do not exist lossless (k, δ)-condensers
from n′ bits to n bits for any 0 < k < n < n′. Before we begin the proof, though, let us sketch its
strategy.

5.4.1 A Proof Sketch

The basic fact that we prove and then exploit is that, for sufficiently small δ, no function from n+1
bits to n bits can be both a lossless (n, δ)-condenser and a lossless (n− 1, δ)-condenser. We prove
this in Lemma 5.11, but before doing so we show that we can take any given lossless (k, δ)-condenser
C : {0, 1}n′ → {0, 1}n and convert it into a function C ′ : {0, 1}k+1 → {0, 1}k that is both a lossless
(k, δ)-condenser and a lossless (k − 1, 6δ) condenser, giving us a contradiction.



Chapter 5. Resilience Amplification 60

We build C ′ in three stages (after reducing to the special case of n′ = n+ 1 in Lemma 5.7).

1. Lemma 5.8: We prove that there exists an (n + 1, k + 1)-OBFS 〈La,n+1〉 that is mapped by
C approximately to an (n, k)-OBFS 〈Sw,n〉. We will construct C ′ by restricting C to La,n+1

and use this result to show that we can effectively treat Sw,n as the target space of C.

2. Lemma 5.9: We show that C maps every (n + 1, k)-OBFS whose support is contained in
La,n+1 approximately to 〈Sw,n〉. This is how we will know that the function C ′ is a lossless
(k, δ)-condenser.

3. Lemma 5.10: We show that C maps every (n + 1, k − 1)-OBFS whose support is contained
in La,n+1 approximately to an (n, k − 1)-OBFS whose support is contained in 〈Sw,n〉. This
allows us to say that C ′ is a lossless (k − 1, 6δ)-condenser.

By putting together all the steps above and applying Lemma 5.11, we arrive at our final result,
which we state precisely in Theorem 5.12.

5.4.2 The Lemmas

We start by reducing our task to the special case of lossless condensers from n+ 1 bits to n bits.

Lemma 5.7. If there exists a lossless (k, δ)-condenser for WSERF’s C : {0, 1}n′ → {0, 1}n, then
there exists a lossless (k, δ)-condenser for WSERF’s D : {0, 1}n+1 → {0, 1}n.

Proof. Define D(x) = C(x ◦ 0n
′−(n+1)). Then any (n+ 1, k)-OBFS given to D will be passed to C

as an (n′, k)-OBFS and so D’s output will have the desired properties.

We now begin proving the three main lemmas outlined in our proof sketch. Our first step is
to establish that there is (n + 1, k + 1) oblivious bit-fixing source that is mapped by our lossless
condenser C to within distance δ of an (n, k) oblivious bit-fixing source. In proving this lemma we
make use of Lemma B.4 from Appendix B, which gives a lower bound on the size of the pre-images
of sets that are known to be approximately mapped to by certain sets of oblivious bit-fixing sources.
Lemma B.4 relies purely on basic properties of oblivious bit-fixing sources.

Lemma 5.8. Let C : {0, 1}n+1 → {0, 1}n be a lossless (k, δ)-condenser for WSERF’s with δ < 1/4
and 0 < k < n. Then there exists an (n+ 1, k+ 1) oblivious bit-fixing source 〈La,n+1〉 and an (n, k)
oblivious bit-fixing source 〈Sw,n〉 such that C(〈La,n+1〉) ∼=δ 〈Sw,n〉.

Proof. Let ϕ and Ψ be the set function and bit function of C respectively. Since
∣∣∣{ n+1
n+1−k

}∣∣∣ =(
n+1
k

)
>
(
n
k

)
=
∣∣∣{ n
n−k
}∣∣∣, there exists some set S ∈

{
n

n−k
}

and two sets L1, L2 ∈
{

n+1
n+1−k

}
such that

ϕ(L1) = ϕ(L2) = S. Since Ψ(Li,−) is two-to-one, we know that for every w ∈ {0, 1}n−k and every



Chapter 5. Resilience Amplification 61

i ∈ {1, 2}, there exist two strings ai, bi ∈ {0, 1}n+1−k such that C(〈Lai,n+1
i 〉) and C(〈Lbi,n+1

i 〉) are
both δ-close to 〈Sw,n〉.

We will show that there exists at least one w for which the strings a1 and b1 differ in only one
bit. We will then define the OBFS La,n+1 to be the OBFS fixing the bits in positions at which a1

and b1 agree, which will give us the (n+ 1, k + 1)-OBFS that we seek.

Suppose for contradiction that the strings a1 and b1 differ in at least two bits for every w. Then
we can apply Lemma B.4 with 〈S〉 = 〈Sw,n〉 to conclude that, for each w, the size of C−1(〈Sw,n〉)
is at least 2k+1 + 2k − δ2k+2. Now we can sum over all w ∈ {0, 1}n−k to get a lower bound on⊔
w C

−1(Sw,n) = C−1({0, 1}n), which we know to be of size at most 2n+1 (the size of the domain).
We do so below:

2n+1 ≥
∑

w∈{0,1}n−k

(
2k+1 + 2k − δ2k+2

)
= 2n−k

(
2k+1 + 2k − δ2k+2

)
= 2n+1 + 2n − δ2n+2

⇒ δ ≥ 1
4

Of course, this is a contradiction since δ < 1/4. Thus, we have some w ∈ {0, 1}n−k and two
strings (call them a0 and b0) in {0, 1}n+1−k, differing in exactly one position, such that C(〈La0,n+1

1 〉)
and C(〈Lb0,n+1

1 〉) are both δ-close to 〈Sw,n〉. Define L ⊂ L1 to be the set of positions at which
the bits of a0 and b0 agree, and set a to be [La0,n+1

1 ]L = [Lb0,n+1
1 ]L. Note that |L| = n − k and so

〈La,n+1〉 is an (n+ 1, k + 1) oblivious bit-fixing source. Furthermore, C(〈La,n+1〉) is equal to
1
2C(〈La0,n+1

1 〉) + 1
2C(〈Lb0,n+1

1 〉), allowing us to apply Lemma 2.6 from the preliminaries to manip-
ulate the statistical distance of interest into what we want.

∆(C(〈La,n+1〉), 〈Sw,n〉) = ∆
(

1
2
C(〈La0,n+1

1 〉) +
1
2
C(〈Lb0,n+1

1 〉), 〈Sw,n〉
)

≤ 1
2

∆(C(〈La0,n+1
1 〉), 〈Sw,n〉) +

1
2

∆(C(〈Lb0,n+1
1 〉), 〈Sw,n〉)

≤ δ

This completes the proof.

Having obtained the “special” pair of oblivious bit-fixing sources 〈La,n+1〉 and 〈Sw,n〉, we now
need to say what happens to the (n+1, k)-OBFS’s whose supports are contained in Lw,n+1. Namely,
we need to show that they map more or less to 〈Sw,n〉. This is not too difficult, because they all
must get mapped to OBFS’s since C is a condenser, and if one of them is mapped to an OBFS that
is not 〈Sw,n〉 it must get mapped very far from 〈Sw,n〉 since distinct OBFS’s are far apart from



Chapter 5. Resilience Amplification 62

each other. This then keeps 〈La,n〉 from being mapped to within distance δ of 〈Sw,n〉, producing a
contradiction. The following lemma formalizes this argument.

Lemma 5.9. Let C : {0, 1}n+1 → {0, 1}n be a lossless (k, δ)-condenser for WSERF’s with δ < 1/6
and 0 < k < n. Suppose that there is an (n + 1, k + 1) oblivious bit-fixing source 〈La,n+1〉 and an
(n, k) oblivious bit-fixing source 〈Sw,n〉 such that C(〈La,n+1〉) ∼=δ 〈Sw,n〉.

Then for every i /∈ L and every β ∈ {0, 1}, we have that C maps the (n+ 1, k) oblivious bit-fixing
source 〈La,n+1 ∩ {i}β,n+1〉 to within distance δ of 〈Sw,n〉.

Proof. Let M = L ∪ {i} and let b ∈ {0, 1}n+1−k be the unique string such that M b,n+1 = La,n+1 ∩
{i}β,n+1. Suppose for contradiction that C(〈M b,n+1〉) is δ-close to some other (n, k)-OBFS 〈V 〉.
We know from Proposition B.2 that ∆(〈Sw,n〉, 〈V 〉) ≥ 1/2, and since both distributions are uniform
distributions on 2k strings, this implies that their supports overlap in at most 2k−1 strings and so
|V − Sw,n| ≥ 2k−1.

But since C(〈La,n+1〉) ∼=δ C(〈Sw,n〉) and M b,n+1 ⊂ La,n+1, we know that C sends at most δ2k of
the strings in M b,n+1 to V −Sw,n. This means that ∆(C(〈M b,n+1〉), 〈V 〉) is at least (2k−1−2δ2k)/2k

(because a distinguisher could accept precisely the strings in V − C(M b,n+1)). On the other hand
though, this distance must be at most δ. The resultant inequality, δ ≥ 1/2 − 2δ implies that
δ ≥ 1/6, a contradiction.

In the third of our three main lemmas, we say what happens to the (n+ 1, k− 1)-OBFS’s with
supports contained in La,n+1: they get mapped approximately to (n, k − 1)-OBFS’s in the target
space that are contained in Sw,n.

Lemma 5.10. Let C : {0, 1}n+1 → {0, 1}n be a lossless (k, δ)-condenser for WSERF’s with δ < 1/4
and 0 < k < n. Suppose that there is an (n + 1, k + 1) oblivious bit-fixing source 〈La,n+1〉 and an
(n, k) oblivious bit-fixing source 〈Sw,n〉 such that C(〈La,n+1〉) ∼=δ 〈Sw,n〉.

Then for every i, j /∈ L and every β, γ ∈ {0, 1}, we have that C maps the (n + 1, k − 1) oblivious
bit-fixing source 〈La,n+1 ∩ {i, j}βγ,n+1〉 to within distance 6δ of an (n, k − 1) oblivious bit-fixing
source whose support is contained in Sw,n.

Proof. Without loss of generality we may take L and S to be [n− k]. Let a′ be a with its final bit
removed, and define the following sets:

M := L ∪ {i}
N := L ∪ {i, j}\{n− k}
L̂ := L ∪ {i, j}

The source that we’re interested in proving something about is 〈L̂aβγ,n+1〉, and we note that its
support is equal to the intersection of the supports of 〈Maβ,n+1〉 and 〈Na′βγ,n+1〉, both of which
are (n, k)-OBFS’s.



Chapter 5. Resilience Amplification 63

Since Maβ,n+1 and Na′βγ,n+1 are (n+ 1, k)-OBFS’s, we know by C’s condenser property that
each is mapped to within distance δ of some (n, k)-OBFS. Further, since Maβ,n+1 ⊂ La,n+1,
Lemma 5.9 tells us more specifically that 〈Maβ,n+1〉 is mapped to within distance δ of 〈Sw,n〉.
Thus, we may write:

C(〈Maβ,n+1〉) ∼=δ 〈Sw,n〉
C(〈Na′βγ,n+1〉) ∼=δ 〈T x,n〉

where 〈T x,n〉 is some (n, k)-OBFS. We will prove our lemma by establishing the following escalating
sequence of claims concerning Sw,n and T x,n, the last two of which directly imply the result.

1. C maps most of L̂aβγ,n+1 into Sw,n ∩ T x,n.

2. 〈Sw,n ∩ T x,n〉 is an (n, k′)-OBFS with k′ < k.

3. ∆(C(〈L̂aβγ,n+1〉), 〈Sw,n ∩ T x,n〉) ≤ 6δ

4. k′ = k − 1, making 〈Sw,n ∩ T x,n〉 our desired (n, k − 1)-OBFS.

Justifications of each claim follow.

Claim 1: At least a (1− 4δ) fraction of the strings in L̂aβγ,n+1 are mapped by C into Sw,n ∩ T x,n.
Since L̂aβγ,n+1 ⊂Maγ,n+1 and C(〈Maγ,n+1〉) ∼=δ 〈Sw,n〉, at most δ2k of the strings in L̂aβγ,n+1 can
be carried outside of Sw,n by C. By the same argument (using Na′βγ,n+1), we know that at most
δ2k of the strings in L̂aβγ,n+1 can be carried outside of T x,n by C. Therefore, at most δ2k+1 strings
in L̂aβγ,n+1 can be carried outside of Sw,n ∩ T x,n by C, leaving at least 2k−1− δ2k+1 strings, which
is a (1− 4δ) fraction of the 2k−1 strings in L̂aβγ,n+1, as desired.

Claim 2: 〈Sw,n ∩ T x,n〉 is a (n, k′)-OBFS with k′ < k.
By Claim 1, Sw,n ∩ T x,n is not empty and so we can apply Proposition B.1 (which characterizes
intersections of OBFS’s) to see that 〈Sw,n ∩ T x,n〉 is an (n, k′)-OBFS with k′ ≤ k and with k = k′

if and only if Sw,n = T x,n. The following argument shows that Sw,n 6= T x,n.

Recall that since Ψ(M,−) is two-to-one, the only strings z for which 〈M z,n+1〉 is carried by
C to within distance δ of Sw,n are aβ and aβ (since we already know by Lemma 5.9 that aβ
and aβ have this property). Since ϕ(M) = S, this means that if we set z to anything else then
C(〈M z,n+1〉) ∼=δ 〈Sw

′,n〉 for some Sw
′,n that is disjoint from Sw,n. Applying this to z = aβ, where

a denotes a with its final bit flipped, we see that C(〈Maβ,n+1〉) ∼=δ 〈Sw
′,n+1〉 for some (n, k)-OBFS

〈Sw′,n〉 whose support is disjoint from Sw,n.

Now assume for contradiction that Sw,n = T x,n. The size of the intersection of Maβ,n+1 with
Na′βγ,n+1 is 2k−1, and since C(〈Na′βγ,n+1〉) ∼=δ 〈T x,n〉 = 〈Sw,n〉, at least 2k−1−δ2k of the strings in
that intersection (and therefore in Maβ,n+1) must be mapped into Sw,n. But since Sw,n and Sw

′,n

are disjoint, none of the strings mapped to Sw,n are mapped to Sw
′,n. This implies that

δ ≥ ∆(C(〈Maβ〉), 〈Sw′,n〉) ≥ 2k−1 − δ2k



Chapter 5. Resilience Amplification 64

When solved for δ, the above equation gives δ ≥ 2k−1/(1 + 2k) which is at least 1/3 for k ≥ 1, a
contradiction.

Claim 3: ∆(C(〈L̂aβγ,n+1〉), 〈Sw,n ∩ T x,n〉) ≤ 6δ.
Let Y = Sw,n∩T x,n, the support of our candidate (n, k−1)-OBFS. We bound ∆(C(〈L̂aβγ,n+1〉), 〈Y 〉)
by counting only the strings that are more likely to be drawn from C(〈L̂aβγ,n+1〉) than from 〈Y 〉
(see Proposition 2.5 in the preliminaries). Recalling that 〈Y 〉 is a flat distribution on 2k

′
elements,

we see that each such string z ∈ {0, 1}n falls into precisely one of the following two categories:

1. z /∈ Y , but it is mapped to by one or more strings in L̂aβγ,n+1.

2. z ∈ Y , and it is mapped by by more than 2k−1−k′ strings in L̂aβγ,n+1.

By Claim 1, we know that there are at most (4δ)2k−1 = δ2k+1 strings that map to strings z that fall
into the first category, so we need to bound, for each z in the second category, the number of strings
in L̂aβγ,n+1 beyond the first 2k−1−k′ that map to z. Let #z be the number of such strings for each
z ∈ Y . The key to bounding #z is to realize that L̂aβγ,n+1 ⊂Maβ,n+1 means that, for each z ∈ Y ,
every string in L̂aβγ,n+1 beyond the first that is mapped to z by C contributes 2−k to the distance
between C(〈Maβ,n+1〉) and 〈Sw,n〉, which is at most δ. Since k′ is at most k − 1, 2k−1−k′ ≥ 1
and so each string counted by #z is at least the second string to be mapped to z, meaning that
every string counted by #z contributes 2−k to ∆(C(〈Maβ,n+1〉), 〈Sw,n〉) ≤ δ. Therefore, if we let
# =

∑
z #z then #/2k ≤ δ, implying that # ≤ δ2k.

Each of the strings in either the first of second categories above contributes 2−(k−1) to the
distance ∆(C(〈L̂aβγ〉), 〈Y 〉), so our above argument shows that that distance is at most

δ2k+1 + δ2k

2k−1
= 6δ

Claim 4: k′ = k − 1.
Proposition B.1, which we used in the proof of Claim 2 to deduce that 〈Sw,n ∩ T x,n〉 is an (n, k′)-
OBFS with k′ < k, states that k′ is determined only by S and T , which are both determined only
by L (and N , but N is determined by L as well). Thus, k′ is independent of the settings of the
bits β and γ, and so if we assume for contradiction that k′ < k− 1, we have that at least a (1− 6δ)
fraction of the set L̂aβγ,n+1 is mapped by C into a set of size at most 2k−2 for all values of β and γ.
Since ∪γ∈{0,1}L̂aβγ,n+1 = Maβ,n+1, this means that at least a (1−6δ) fraction of Maβ,n+1 is mapped
into a set of size 2 · 2k−2 = 2k−1. By accepting precisely the strings in this set, an adversary could
distinguish between C(〈Maβ,n+1〉) and 〈Sw,n〉 with advantage at least (1 − 6δ) − 1/2 = 1/2 − 6δ
because 〈Sw,n〉 is a flat distribution. But C(〈Maβ,n+1〉) ∼=δ 〈Sw,n〉, implying that 1/2 − δ ≤ δ,
which means that δ ≥ 1/4, a contradiction.

In our final lemma, we prove the basic fact that gives us our ultimate contradiction: that a
function from n+ 1 bits to n bits cannot be a lossless condenser both for (n+ 1, n)-OBFS’s and for



Chapter 5. Resilience Amplification 65

(n+ 1, n− 1)-OBFS’s. The proof of this lemma is simple in part because we can take advantage of
the ideas already developed in Lemma 5.8.

Lemma 5.11. For every integer n > 1, any function C : {0, 1}n+1 → {0, 1}n that is both a lossless
(n, δ)-condenser for WSERF’s and a lossless (n−1, δ)-condenser for WSERF’s must have δ ≥ 1/4.

Proof. Suppose for contradiction that there exists a function C as defined in the statement of
the lemma but with δ < 1/4. If we consider C as a lossless (n − 1, δ)-condenser, Lemma 5.8
tells us that there exists an (n + 1, n)-OBFS 〈La,n+1〉 and an (n, n − 1)-OBFS 〈Sw,n〉 such that
C(〈La,n+1〉) ∼=δ 〈Sw,n〉.

On the other hand though, C is a lossless (n, δ)-condenser, so C(〈La,n+1〉) ∼=δ 〈Un〉. By the
triangle inequality for statistical distance (Lemma 2.6), we then have that 〈Sw,n〉 ∼=2δ 〈Un〉. But
∆(〈Sw,n〉, 〈Un〉) = 1/2 since |Sw,n| = 2n−1, so we have a contradiction and therefore C cannot
exist.

5.4.3 The Result

We are now ready to state and prove our impossibility result.

Theorem 5.12. There do not exist lossless (k, δ)-condensers for WSERF’s from n′ bits to n bits
for any 0 < k < n < n′ and any δ < 1/24.

Proof. Suppose for contradiction that we have such a lossless condenser C. We may assume, by
Lemma 5.7, that n′ = n+1. By Lemma 5.8, we know that we have an (n+1, k+1)-OBFS 〈La,n+1〉
and an (n, k)-OBFS 〈Sw,n〉 such that C(〈La,n+1〉) ∼=δ 〈Sw,n〉. We now define a new function
C ′ : {0, 1}k+1 → {0, 1}k as follows: given an input x ∈ {0, 1}k+1, C ′ creates a string y ∈ {0, 1}n+1

by setting [y]L = a and [y]L = x. C ′ then returns [C(y)]S if C(y) ∈ Sw,n, and 0k otherwise.

Lemma 5.9 and Lemma 5.10 show that if CR is the restriction of C to La,n, CR is a lossless
(k, δ)-condenser and a lossless (k − 1, 6δ)-condenser respectively. But they tell us more than this:
they also tell us that every (k+ 1, k)-OBFS (resp. (k+ 1, k− 1)-OBFS) is mapped by CR to within
distance δ (resp. 6δ) of an OBFS whose support is contained in Sw,n. This means that modifying CR

by taking all the strings mapped outside of Sw,n by CR and re-mapping them anywhere within Sw,n

will not hurt CR’s performance as a lossless (k, δ)-condenser or as a lossless (k − 1, 6δ)-condenser.

However, this modification, together with removal of the (fixed) bits with positions in S, was
exactly how we created C ′. We therefore have that C ′ is a lossless (k, δ)-condenser and a lossless
(k − 1, 6δ)-condenser; Lemma 5.11 then implies that 6δ ≥ 1/4, a contradiction.

5.5 References

All the results proven in this chapter and in Appendix B (which this chapter cites) are original.



Chapter 6

Further Study

As we have seen, resilient and exposure-resilient functions are both satisfying as objects of study
and important as practical tools. A considerable amount is known about their properties and
relationships, but there is much that is not yet understood both in terms of structural relationships
and explicit constructions.

For example, in the statistical setting there are currently no useful explicit constructions of
strong ERF’s that are not also almost-perfect RF’s. The same is true for the weakly adaptive
ERF’s: there are no non-trivial constructions of weakly adaptive ERF’s that are not also RF’s.
This means that, at least for some settings of parameters, we may not have optimal constructions
because of the separations proven in Chapter 4 which show that, for instance, the almost-perfect RF
property is strictly stronger than the strongly adaptive ERF property. Relatedly, it would be nice
to have a better understanding of exactly how pronounced the separations are between the different
classes of RF’s and ERF’s. The separations that we proved in Chapter 4 are not necessarily as
strong as possible, so in some sense our picture of the RF and ERF zoo is still incomplete.

It would also help to have better bounds on the parameters of the different types of functions,
especially weakly static statistical ERF’s (the weakest object in the statistical setting) and almost-
perfect RF’s (the strongest object). Such bounds would help us see how different the various RF’s
and ERF’s really are from each other; more importantly though, they would also give us a better
understanding of the intrinsic limits of extraction from oblivious bit-fixing sources. Recall that
in Chapter 5 we posed an open question along these lines, asking whether there is a fundamental
difference in terms of achievable output size between extraction from oblivious bit-fixing sources
with constant entropy and oblivious bit-fixing sources with polylogarithmic entropy. To begin
answering this question, we showed that lossless condensers for weakly static ERF’s cannot exist
for any non-trivial setting of parameters, thus eliminating a natural way of attempting to close the
gap in output length between the constant and non-constant entropy cases. However, proving that
such a gap really exists and making precise its extent remains an open question.

66



Chapter 6. Further Study 67

One possible approach to this challenge that continues along the lines we developed in Chap-
ter 5 is to prove our impossibility result about lossless condensers for weakly static ERF’s in greater
generality. This could be done by ruling out the existence of all condensers for weakly static ERF’s
rather than just those condensers that suffer no entropy loss during the condensing process. How-
ever, a more general and much more powerful way to proceed would be to establish the impossibility
of constructing any function C from n′ bits to n bits that when composed with k-ERF’s on n bits,
gives k-ERF’s on n′ bits.

Lastly, since condensers for weakly static ERF’s are new, their analogues for the cases of the
other classes of RF’s and ERF’s have not been studied, and it is not obvious whether they exist or
not. It would be interesting to find out whether, for instance, we can condense oblivious bit-fixing
sources for the purposes of regular randomness extraction from oblivious bit-fixing sources even
though we cannot do so for exposure-resilient extraction.



Appendix A

Error-Correcting Codes

An error-correcting code is an object designed to overcome the following difficulty: suppose Alice
and Bob are communicating over a faulty channel and Alice wants a way to encode a message x
such that if she sends the encoded message E(x) over the channel then Bob will be able to retrieve
x even if it is somehow corrupted before it reaches him (because of hardware failure, an adversary,
or anything else). Naturally, analysis of such a problem requires a more formal way of modeling the
faultiness of the channel and there are always different ways of doing this. However, we will only
make an assumption about the worst-case behavior of the channel; that is, we will only assume
that there exists some integer d such that strictly fewer than d of the bits of E(x) are modified
when it is sent over the channel. Under this assumption, we can then easily define an object that
serves our purpose, and we do so below. Note that we have m as the input length and n as the
output length here in order to keep the parametrization consistent with that of the discussion in
Section 3.4.1.

Definition A.1 (Error-Correcting Code1). A function E : {0, 1}m → {0, 1}n is an error-correcting
code with minimum distance d if and only if, for every pair of distinct strings x, y ∈ {0, 1}m we
have that E(x) and E(y) differ in at least d of their bits. Given such a an error-correcting code
E : {0, 1}m → {0, 1}n, we define its rate to be m/n.

It is easy to see that a function E will solve Alice and Bob’s problem without fail if and only
if it is an error-correcting code with minimum distance 2d. Note that we have not guaranteed
anything about the efficiency of the encoding and decoding processes and, further, that an efficient
encoding is not necessarily efficiently decodable. This is of minor concern in this work since we
deal only with codes that are linear maps from Fm2 to Fn2 and we are not interested in decoding our
codes, but rather only want to use them as perfect RF’s.

When designing error-correcting codes, we would of course like to maximize d (this corresponds
to minimizing k when we treat E as a perfect RF). However, we would also like to have the rate of

1Typically, such codes are defined for alphabets more general than {0, 1}, but in the interest of simplicity of
presentation we leave this out here.

68



Appendix A. Error-Correcting Codes 69

the code be as close to 1 as possible (this corresponds to getting as many output bits as possible
from the perfect RF). We now prove some standard bounds on these parameters.

Proposition A.2 (Singleton Bound). Let E : {0, 1}m → {0, 1}n be an error-correcting code with
minimum distance d. Then m ≤ n− d+ 1.

Proof. Consider the set C = E({0, 1}m). Each element in C is distinct and, since every two elements
differ in at least d places, we can delete the first d− 1 bits of each string in C to obtain a new set
with the same size. Since these new strings are all n− (d− 1) bits long, we have |C| ≤ 2n−d+1. On
the other hand, |C| = 2m, so we are done.

The second bound we present is the one that shows us the limitations of linear perfect RF’s.

Proposition A.3. Let E : {0, 1}m → {0, 1}n be an error-correcting code with minimum distance d
and with m > log n+ 1. Then d < dn/2e.

Proof. Suppose for contradiction that d ≥ dn/2e and let C = E({0, 1}m) as before. Replace all
the 0’s in the elements of C with −1’s and consider any two elements x and y of C as vectors in
Rn. Since x and y differ in at least dn/2e components, their dot product x · y contains at least
dn/2e minus ones, and so we have x · y ≤ 0. We will prove, by induction on n, that because of this
property C can contain no more than 2n vectors.

Let A(n) denote the maximal size of any set S ⊂ Rn with the property that x · y ≤ 0 for all
x, y ∈ S. The base case (n = 1) is clear, so A(1) = 2. Now let us consider S ⊂ Rn with this property.
Without loss of generality (because we can change basis), the first vector in S is (−1, 0, . . . , 0). This
implies that all the other vectors in S have a non-negative first component. If the vector (1, 0, . . . , 0)
is also in S then all the other vectors in S have to lie in the (n−1)-dimensional subspace normal to
(1, 0, . . . , 0) so we can apply the inductive hypothesis to see that A(n) = 2+A(n−1). If (1, 0, . . . , 0)
is not in S then we can project every vector besides (−1, 0, . . . , 0) onto the subspace orthogonal to
(−1, 0, . . . , 0). Since all the projected vectors have non-negative first components, this projection
will only decrease their dot products with each other and so we can apply the inductive hypothesis
to see that there are at most A(n− 1) of them. Since in this case we conclude that S can have at
most 1 +A(n− 1) vectors, we see that in general A(n) ≤ 2 +A(n− 1). Of course, this recurrence
is equivalent to A(n) ≤ 2n, as desired.

Since 2m = |C| ≤ 2n, we have that m ≤ log 2n = log n+ 1, a contradiction.



Appendix B

Basic Facts about Oblivious

Bit-Fixing Sources

We present here some basic properties of oblivious bit-fixing sources, their intersections with each
other, and the statistical distance between them.

Our first proposition tells us what the intersection of two bit-fixing sources looks like.

Proposition B.1. Let 〈A〉 = 〈La,n〉 and 〈B〉 = 〈M b,n〉 be two distinct (n, k) oblivious bit-fixing
sources. Then A ∩ B is either the empty set, or it is the support of an (n, k′) oblivious bit-fixing
source with k′ = n− |L ∪M | < k.

Proof. If the fixed bits of A and those of B disagree in any position i ∈ L∩M , then the two sources
are disjoint and the result is achieved, so we may assume that [A]L∩M = [B]L∩M . Call this string
a. Any string w ∈ A ∩ B, must have the bits in L ∩M fixed to a. However, it must also have
the bits in L−M fixed to [A]L−M and the bits in M − L fixed to [B]M−L, and the rest of its bits
can take on any value. Thus, A∩B is the support of an oblivious bit-fixing source on {0, 1}n with
|L ∪M | fixed bits. Further, if L = M then A would be identical to B, so |L ∪M | > n − k and
consequently k′ < k.

We can apply Proposition B.1 to find the minimum statistical distance between any two (n, k)-
OBFS’s.

Proposition B.2. Let 〈A〉 = 〈La,n〉 and 〈B〉 = 〈M b,n〉 be two distinct (n, k) oblivious bit-fixing
sources. Then ∆(〈A〉, 〈B〉) ≥ 1/2

Proof. If L = M then the sources must have disjoint support and we are done, so we may assume
that |L ∪M | > n − k. We know from Proposition B.1 that the intersection between the supports
of these two sources has size at most 2k−1, so if we choose a string from 〈La,n〉 we will also land in
〈M b,n〉 at most 2k−1/2k = 1/2 of the time, which implies the result.

70



Appendix B. Basic Facts about Oblivious Bit-Fixing Sources 71

Our third proposition is slightly more involved. It essentially states that if we have two sources
with the same set of fixed bits but whose actual fixed bit values differ in more than one place, then
any other source will not have too much overlap with the union of the former two sources.

Proposition B.3. Let A = La,n and B = Lb,n be the supports of two distinct (n, k) oblivious
bit-fixing sources. If there is a third (n, k) oblivious bit-fixing source 〈C〉 distinct from 〈A〉 and 〈B〉
whose support intersects A ∪ B on more than half of its 2k strings, then a and b agree in exactly
n− k − 1 of their bits.

Proof. Let the support of 〈C〉 be C = M c,n. We first claim that for every i ∈M ∩L, we must have
[La,n]i = [Lb,n]i. To see this, assume the contrary: then one of the two of [La,n]i and [Lb,n]i (without
loss of generality, say it’s [La,n]i) disagrees with [M c,n]i, so C ∩ A would be empty, meaning that
C ∩ (A ∪ B) = C ∩ B. Since C ∩ B is the support of an OBFS, it’s size is a power of 2 and so it
must be 2k, meaning that C = B, a contradiction.

Having proven this claim, let us now show how it implies the result. As Proposition B.1 tells
us, C ∩ A and C ∩ B are (n, k′)-OBFS’s with k′ = n − |L ∪M |. And since |C ∩ (A ∪ B)| > 2k−1,
then without loss of generality |C∩A| > 2k−2, implying that k′ > k−2, which gives that |L∪M | <
n − k + 2. Because both L and M are of size n − k, we then have that |L ∩M | > n − k − 2.
Since a and b agree at all the positions in M ∩ L, they must agree in at least n− k − 1 positions.
But they cannot agree in n − k positions (or else they would be identical), so we have proved the
proposition.

The last statement that we prove here is a lemma that we use in our analysis of lossless
condensers for WSERF’s. It uses Proposition B.3 to give a lower bound on the size of the pre-
image of a set that is mapped to by oblivious bit-fixing sources.

Lemma B.4. Suppose that a function C : {0, 1}n+1 → {0, 1}n maps each of the four (n + 1, k)
oblivious bit-fixing sources 〈La1,n+1

1 〉, 〈Lb1,n+1
1 〉, 〈La2,n+1

2 〉, and 〈Lb2,n+1
2 〉 to within statistical dis-

tance δ of some flat distribution 〈S〉, and that a1 and b1 differ in more than one bit. Then
|C−1(S)| ≥ 2k+1 + 2k − δ2k+2.

Proof. We know that C−1(S) contains at least (1−δ)2k strings from each of the four OBFS’s by the
fact that it carries each to within δ of 〈S〉. However, we do not know to what extent these sources
overlap. We know that 〈La1,n+1

1 〉 and 〈Lb1,n+1
1 〉 are disjoint, so we can count at least 2(1 − δ)2k

strings in C−1(S). But what about 〈La2,n+1
2 〉 and 〈Lb2,n+1

2 〉? This is where Proposition B.3 comes
in: since a1 and b1 differ in at least two places, we can use the proposition to conclude that at most
half of each of La2,n+1

2 and Lb2,n+1
2 intersects the union La1,n+1

1

⊔
Lb1,n+1

2 . Together with the fact
that C carries each of these two sources to within δ of 〈S〉, we know that at most δ2k of the strings
in La2,n+1

2 −B1 are carried into S and that the same is true for Lb2,n+1
2 . We now have counted at

least 2(1− δ)2k + 2(2k−1 − δ2k) = 2k+1 + 2k − δ2k+2 strings in C−1(S), as desired.



Bibliography

[1] P. Olofsson. Probabilities: The Little Numbers that Rule Our Lives, page 253. John Wiley and
Sons, 2007.

[2] R.W. Clark. The Man Who Broke Purple. Weidenfeld and Nicolson, 1977.

[3] G. Marsaglia. Random numbers fall mainly in the planes. In Proc. National Academy of
Sciences, volume 61, pages 25–28, 1968.

[4] Randu, March 2009. URL http://en.wikipedia.org/wiki/RANDU.

[5] M. Bellare and S. Miner. A forward-secure digital signature scheme. In Proceedings of Cryp-
tography, pages 431–448, 1999.

[6] N. Someren. How not to authenticate code. crypto 1998 rump session, 1998. Santa Barbara.

[7] A. Shamir and N. Someren. Playing “hide and seek” with stored keys. In Proceedings of
Financial Cryptography, 1999.

[8] A. Dornan. New viruses search for strong encryption keys. In PlanetIT Systems Management
News, March 1999.

[9] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-resilient functions
and all-or-nothing transforms. In Advances in Cryptography – EUROCRYPT 2000, volume
1807/2000, pages 453–469, 2000. URL http://theory.csail.mit.edu/~cis/pubs/yevgen/

aont.ps.

[10] K. Kurosawa, T. Johansson, and D. Stinson. Almost k-wise independent sample spaces and
their cryptologic applications. In Proceedings of EuroCrypt, pages 409–421, 1997.

[11] A. Gabizon, R. Raz, and R. Shaltiel. Deterministic extractors for bit-fixing sources by
obtaining an independent seed. In Proc. 45th IEEE Symposium on Foundations of Com-
puter Science, pages 394–403, 2004. URL http://eccc.uni-trier.de/eccc-reports/2005/

TR05-109/Paper.pdf.

[12] J. Kamp and D. Zuckerman. Deterministic extractors for bit-fixing sources and exposure-
resilient cryptography. In FOCS 2003, pages 92–101, 2003. URL http://www.cs.utexas.

edu/users/diz/pubs/erf.pdf.

72

http://en.wikipedia.org/wiki/RANDU
http://theory.csail.mit.edu/~cis/pubs/yevgen/aont.ps
http://theory.csail.mit.edu/~cis/pubs/yevgen/aont.ps
http://eccc.uni-trier.de/eccc-reports/2005/TR05-109/Paper.pdf
http://eccc.uni-trier.de/eccc-reports/2005/TR05-109/Paper.pdf
http://www.cs.utexas.edu/users/diz/pubs/erf.pdf
http://www.cs.utexas.edu/users/diz/pubs/erf.pdf


Bibliography 73

[13] N. Nisan. Extracting randomness: How and why: A survey. In Proceedings of the 11th Annual
IEEE Conference on Computational Complexity, pages 44 – 58, 1996.

[14] N. Nisan and A. Ta-Shma. Extracting randomness: A survey and new constructions. In
Journal of Computer and System Sciences, volume 58, pages 148 – 173, 1999.

[15] S. Vadhan. Randomness extractors and their many guises. In Proceedings of the 43rd Annual
IEEE Symposium on Foundations of Computer Science, pages 9 – 12, 2002.

[16] R. Shaltiel. Recent developments in explicit constructions of extractors. In Bulletin of the
EATCS, volume 77, pages 67 – 95, 2002.

[17] V. Guruswami, C. Umans, and S. Vadhan. Unbalanced expanders and randomness extractors
from parvareshvardy codes. In Proceedings of the 22nd Annual IEEE Conference on Computa-
tional Complexity (CCC 07), pages 96–108, June 2007. URL http://sosp16.cs.washington.

edu/homes/venkat/pubs/papers/PV-condenser.pdf.

[18] J. Hastad, R. Impagliazzo, L.A. Levin, and M. Luby. A pseudorandom generator from any
one-way function. SIAM Journal on Computing, 28:12–24, 1999. URL http://www.icsi.

berkeley.edu/~luby/PAPERS/hill.ps.

[19] O. Goldreich. Pseudorandom generators: A primer. 2008. URL http://www.wisdom.

weizmann.ac.il/~oded/PS/prg08.pdf.

[20] S. Vadhan. Lecture notes for computer science 225: Pseudorandomness. 2007. URL http:

//www.eecs.harvard.edu/~salil/cs225/lecnotes/list.htm.

[21] Y. Dodis, A. Sahai, and A. Smith. On perfect and adaptive security in exposure-resilient
cryptography. In Advances in Cryptography – EUROCRYPT 2001, volume 2045, pages 301–
324, 2001. URL http://people.csail.mit.edu/asmith/PS/DSS-adaptive.ps.

[22] V. Byoko. On the security properties of oaep as an all-or-nothing transform. In Proc. of
Crypto., pages 503–518, 1999.

[23] B. Chor, O. Goldreich, J. Hastad, J. Freidmann, S. Rudich, and R. Smolensky. The bit
extraction problem or t-resilient functions. In Proc. 26th IEEE Symposium on Foundations of
Computer Science, pages 396–407, 1985. URL http://www.wisdom.weizmann.ac.il/~oded/

PS/p3.ps.

[24] J. Radhakrishnan and A. Ta-Shma. Bounds for dispersers, extractors, and depth-two super-
concentrators. In Proc. 38th IEEE Symposium on Foundations of Computer Science, pages
585–594, 1997. URL http://eprints.kfupm.edu.sa/71975/1/71975.pdf.

[25] P. Diaconis. Group representations in probability and statistics. In Lecture Notes–Monograph
Series 11, Institute of Mathematical Statistics, 1988. Hayward, CA.

[26] A. Lubotzky, R. Philips, and P. Sarnak. Ramanujan graphs. Combinatorica, (8):353–398,
1988.

http://sosp16.cs.washington.edu/homes/venkat/pubs/papers/PV-condenser.pdf
http://sosp16.cs.washington.edu/homes/venkat/pubs/papers/PV-condenser.pdf
http://www.icsi.berkeley.edu/~luby/PAPERS/hill.ps
http://www.icsi.berkeley.edu/~luby/PAPERS/hill.ps
http://www.wisdom.weizmann.ac.il/~oded/PS/prg08.pdf
http://www.wisdom.weizmann.ac.il/~oded/PS/prg08.pdf
http://www.eecs.harvard.edu/~salil/cs225/lecnotes/list.htm
http://www.eecs.harvard.edu/~salil/cs225/lecnotes/list.htm
http://people.csail.mit.edu/asmith/PS/DSS-adaptive.ps
http://www.wisdom.weizmann.ac.il/~oded/PS/p3.ps
http://www.wisdom.weizmann.ac.il/~oded/PS/p3.ps
http://eprints.kfupm.edu.sa/71975/1/71975.pdf


Bibliography 74

[27] O. Goldreich. A note on computational indistinguishability. In IPL, pages 277–281, 1990.
URL http://www.wisdom.weizmann.ac.il/~oded/PS/iplnote.ps.

[28] C.H. Bennett, G. Brassard, and J.M. Robert. Privacy amplification by public discussion. SIAM
J. Computing, 17(2):210–299, April 1988.

[29] R. Rivest. All-or-nothing encryption and the package transform. In Fast Software Excryption,
LNCS, volume 1267, pages 210–219, 1997.

http://www.wisdom.weizmann.ac.il/~oded/PS/iplnote.ps

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Randomness and Pseudorandomness
	1.2 Pseudorandom Generators Versus Randomness Extractors
	1.3 Exposure-Resilience and the Key Exposure Problem
	1.4 The Ideal ERF
	1.5 Variations on a Theme
	1.6 Contributions of This Thesis
	1.7 Outline

	2 Preliminaries
	2.1 The Basics
	2.1.1 Sets
	2.1.2 Distributions
	2.1.3 ``Big O'' Notation
	2.1.4 Algorithms and Polynomial Time

	2.2 Indistinguishability
	2.2.1 Perfect Indistinguishability
	2.2.2 Statistical Indistinguishability
	2.2.3 Computational Indistinguishability

	2.3 Randomness Extraction
	2.3.1 Random Sources
	2.3.2 Extractors

	2.4 Pseudorandom Generators
	2.5 References

	3 The RF and ERF Zoo
	3.1 Definitions
	3.1.1 Resilient Functions
	3.1.2 Exposure-Resilient Functions

	3.2 An Alternate Characterization
	3.2.1 Resilient Functions: Worst-Case Extractors
	3.2.2 Weak ERF's: Average-Case Extractors
	3.2.3 The Strong ERF's

	3.3 Applications
	3.3.1 Extraction of Randomness
	3.3.2 The Faulty Channel Problem
	3.3.3 Key Renewal Problem
	3.3.4 All-or-Nothing Transforms
	3.3.5 Gap Secret Sharing

	3.4 Constructions
	3.4.1 A Perfect ERF
	3.4.2 Two Weakly Static Statistical ERF's
	3.4.3 Obtaining Computational RF's and ERF's

	3.5 References

	4 Relationships Among Resilient and Exposure-Resilient Functions
	4.1 In a Perfect World...
	4.2 The Statistical Setting
	4.2.1 Inclusions
	4.2.2 Separations and a Preliminary Classification
	4.2.3 Almost-Perfect RF's and Classifying the Entire Zoo

	4.3 References

	5 Resilience Amplification
	5.1 Background and Motivation
	5.1.1 Resilience Amplification and Its Benefits
	5.1.2 Previous Uses of Amplification Procedures
	5.1.3 Application to Weakly Static ERF's

	5.2 The Definition of Lossless Condensers for WSERF's
	5.3 Impossibility in the Perfect Setting
	5.4 Impossibility in the Statistical Setting
	5.4.1 A Proof Sketch
	5.4.2 The Lemmas
	5.4.3 The Result

	5.5 References

	6 Further Study
	A Error-Correcting Codes
	B Basic Facts about Oblivious Bit-Fixing Sources
	Bibliography

