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Abstract

In the economic theory problem of two-sided matching, we seek to create matchings between

agents on two sides of a market, each of whom has ranked, ordinal preferences over agents

on the other side. Of particular interest are stable matchings, where no pair of agents would

mutually prefer to be matched to each other than to their assigned partners. Not only

theoretically relevant, matching algorithms can successfully solve real-world conundrums,

such as how to optimally match medical students to hospital residency programs.

The first part of this thesis gives an introduction to the theory of two-sided matching,

focusing on methods of finding stable matchings, the structure of the set of stable match-

ings, and questions of strategic behavior under stable matching mechanisms. The second

part introduces a novel deep learning framework that models one-to-one matching markets

and demonstrates its ability to learn approximately stable matchings, successfully replicat-

ing Gale-Shapleys original stability results. Furthermore, this framework finds matchings

which are both complete and achieve high aggregate welfare. Given this, our framework

holds promise for examining the until now, poorly understood trade-offs between dominant-

strategy incentive compatibility, a strategic question for individual agents, and the aggregate

stability for all agents of a matching.
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Thesis Structure

This paper is divided into two parts. Part I (Chapters 1-4) serves as a primer on one-

to-one and many-to-one matching markets. This section is expository and heavily draws

upon the work of Roth and Sotomayor in their book, Two-Sided Matching, A Study in

Game-Theoretic Modeling and Analysis [28], covering the history, mathematical structures,

and strategic questions that arise from the stable matching problem. Part II (Chapters

5-7) focuses on applications of deep learning to the stable matching problem. This section

contains original research demonstrating the successful replication of theoretical stability

results using deep learning methods and lays the groundwork for future work using this

deep learning framework to understand the trade-offs between dominant strategy incentive

compatibility and stability.

NB: As Part I is more expository in nature, it is intended to satisfy the Mathematics thesis

requirements. Part II, focused more on original research using deep learning methods, is

intended to satisfy the Computer Science thesis requirements.
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Chapter 1
A Brief History

In this chapter, we provide a brief history of the field of matching theory. We begin with

a motivating example and move on to an overview of the theoretical questions related to

matching that concern mathematicians, computer scientists, and economists alike. Assum-

ing limited knowledge of the field, we will then move from theory to practice and discuss

concrete examples of both historical and present-day problems where matching theory has

been successfully applied, to illustrate its real-world importance.

1.1 Mathematics of Matching

In this section, we will first present a motivating example, and then provide an overview of

the large, theoretical questions in the field of matching that will be covered more in depth

in the following chapters of Part I.

1.1.1 The Marriage Problem

Consider a small, isolated village in which we’d like to arrange marriages between pairs of

men and women (assuming only heterosexual preferences), and we want to pair them such

that there are no divorces [14]. In particular, this means that if a man and woman who

are not paired mutually prefer to be married to each other over their current spouses, then

two divorces would occur, and we want to avoid this scenario. In this example, we also

assume that people would prefer to be married than single. We see that this is an example

9



CHAPTER 1. A BRIEF HISTORY 10

of one-to-one matching, because there is no polygamy, and therefore, each man is married

to at most one woman, and vice versa.

First, consider a village with only 1 man, and 0 women. How can we arrange marriages so

that there are no divorces? There are no possible marriages since there are no women, and

trivially, we will have no divorces either.

Now, consider a village with exactly 1 man and 1 woman. How can we arrange marriages

so that there are no divorces? Given that each individual prefers to be married rather than

being single, we can pair the two together, and there will be no divorces either, because there

are no alternative options.

However, consider if the woman finds the man unacceptable to marry, and would prefer to

be single than marry him. In this case, even though there are two people, no marriages

can occur, because the woman does not find the man acceptable. This leads to a concept

of individual rationality, which we will formally introduce in Chapter 2, which asserts that

marriages can only occur between mutually acceptable partners.

Now, consider a village with 2 men and 1 woman. How can we arrange marriages so that

there are no divorces? Since the number of marriages is limited by the number of women in

this scenario, should she marry man A or man B? Say that the woman prefers intelligence

(man A) to muscular physique (man B). Then, given that there are fewer women, intuition

tells us that pairing the woman with man A will be the only possible marriage that does not

lead to divorce, as if she is married to man B, she will divorce him in favor of marrying man

A.

Now, consider a village with n total men and 1 woman. By similar intuition to the previous

example, we can only have one marriage, since the number of marriages is limited by the

number of women. Thus, out of the n total men, the only marriage that will not lead to

divorce is when the singular woman marries her most preferred man out of the group.

Simple enough, you might say. However, what happens if there are n men and v women

in this small, isolated village. Now, the preferences of each of the men and women might

conflict with each other, and the answer is not as simple as it was above. How do we arrange

marriages so that there are no divorces then?
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1.1.2 Theoretical Questions

In the fields of mathematics, computer science, and economics, the above problem is known

as the stable marriage problem or stable matching problem. Simply put, to solve this problem

is to find a stable matching between two equally sized sets of elements given an ordering of

preferences for each element, where a matching is a mapping from elements of one set to

elements of the other set, and a stable matching is such that no pair (A,B) would both be

better off matched with each other than their current matches. This question was solved in

1962, with the publication of the now-famous paper, College Admissions and the Stability of

Marriage, by David Gale and Lloyd Shapley. Most importantly, their paper demonstrated

that in any setting, not only does a stable matching always exist, but it can be found in

quadratic time using the deferred acceptance algorithm. In the following decades, even

greater progress was made in the field of matching markets, with researchers understanding

not only the existence of a stable matching in all settings, but the types and structure of stable

matchings as well as the game-theoretic properties of matching on a market level and the

strategic incentives of individual agents. Furthermore, the results of stable matching derived

by theoretical economists are beautiful examples of lattice structures in mathematics, and

many older results have been re-derived using the mathematics of lattices, such as Tarski’s

Fixed Point Theorem.

1.2 From Theory to Practice

While the stable marriage problem and matching markets at large are interesting theoretical

questions to study in it of itself, what makes the field most palpably interesting for me

is the extraordinary extent to which the results have impact beyond a research paper or

classroom chalkboard. Below, we shall provide a few examples, both historical and modern,

that demonstrate the critical importance of continuing to push boundaries in the field.

1.2.1 Medical Matching

In the 1920s, hospitals introduced the first medical residency programs, offering concentrated

exposure to clinical medicine for the students and a supply of relatively cheap labor for the

hospitals. The competition for medical interns was great, given that a far higher number

of new residency positions were available than the number of graduating medical students

applying for such positions [28]. As a result, two types of market failures began to occur.
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Firstly, each hospital, in its desire to finalize binding agreements with their interns earlier

than their competitor hospitals, would move their acceptance date ever so slightly earlier.

Whereas previously, interns had to accept their offers by the end of their senior year of

medical school, by 1944, the acceptance date had been moved two full years earlier. Hospitals

were accepting interns before they had ever seen a student’s final grades, and students were

accepting offers before they had even realized they might be afraid of surgery or blood! To

rectify this, the Association of American Medical Colleges (AAMC) prevented the release

of transcripts or recommendation letters until the end of junior year, effectively delaying

residency selection until the senior year of medical school.

However, hospitals still wanted to finalize their interns faster than their competitors, so the

time limit for responding to offers rapidly shortened. The AAMC mandated a ten-day con-

sideration period in 1945, and by 1949, it was shortened to just twelve hours. Unsurprisingly,

the compressing of this pivotal decision-making period led to a slew of additional problems.

Hospitals whose first-choice interns eventually rejected them would see their preferred al-

ternate candidates accept other positions as well, leaving them with no one. Students who

were on the wait list at their first-choice residency program would be forced to accept a less

preferable choice, even if seats later opened up at their first-choice. Much to the displeasure

of hospitals, some students even reneged on their original residency commitments and chose

to accept a later offer from a more preferable hospital.

Given these market failures, where individually rational decisions made by individual hospi-

tals and students led to both costly and sub-optimal larger market outcomes, a centralized

matching system, called the National Resident Matching Program (NRMP) was proposed

by the AAMC in 1952. Students would rank in order of preference hospital programs, and

similarly, hospitals would rank in order of preference the students who had applied to their

programs. These rankings would be submitted to a central bureau, who would input this

information into an algorithm to produce a matching for hospitals and interns. While this

new system was completely voluntary and hospitals and students remained completely free

to make separate arrangements with hospitals, over 95% of eligible students and hospitals

participated in the centralized system through the 1970s. This leads us to two questions:

1. What explains the ridiculous actions of hospitals and interns in their residency labor

market prior to 1952?

2. Why was the centralized matching system such a successful alternative, able to attain

such high rates of voluntary participation?

For answers, we turn to the field of market design – more specifically, matching theory.
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1.3 Market Design and Matching Theory

Market design is a field at the intersection of economics and game theory that takes an engi-

neering approach to designing economic incentives in strategic settings, such that players who

act rationally converge upon a desired objective. For matching theory in particular, we want

a mathematical relationship that describes the formation of new relationships (matches),

from unmatched agents of two types. As shown in the above example, matching theory has

often been used to study labor markets, as employment can be characterized as a match be-

tween a firm and employee. Moreover, we may also consider heterosexual marriages, which

require the pairing of men and women, or urban school districts like Boston, New York City,

or Chicago, which require the pairing of students and high schools.

The types of problems studied in matching theory have a few characteristics. Firstly, they

are two-sided, meaning that agents in these markets belong to one of two disjoint sets. It

is not possible for an intern to become a hospital or a man to become a woman (in this

setting). Secondly, the nature of matching markets is that they are bilateral. In a marriage,

if a woman is married to a man, the man is also married to the woman and if I am an intern at

a hospital, that hospital also employs me as an intern. We also distinguish between matching

markets that are one-to-one, many-to-one, or many-to-many. One-to-one matchings, such

as heterosexual marriages, require each agent on one side of the market to match to exactly

one agent on the other side of the market. Many-to-one matchings can have many agents on

one side of the market match to one agent on the other side. For example, many residents

can intern at one hospital. Lastly, many-to-many matchings allow multiple agents on one

side of the market to match multiple agents on the other side. For example, we can consider

firms and consultants, where firms can hire more than one consultant, and consultants can

work for more than one firm. For the purpose of this thesis, we will be focusing specifically

on two-sided, bilateral, one-to-one matching markets. Lastly, and most importantly, each

agent in the market has heterogeneous and idiosyncratic preferences with individual-specific

utilities. Each side of the market is unlikely to have uniform agreement over who ought to

be ranked first, second, and so on, and therefore, the utility functions of each agent can vary

greatly.

1.4 Field Development and Further Applications

Over the past sixty years, the theoretical and practical applications of matching theory

and market design have developed in parallel, each informing the other. In 1984, Alvin
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Roth would use the theoretical foundations provided by Gale and Shapley in 1962 to prove

the effectiveness of the NMRP centralized matching system. Roth would go on to help re-

design both the New York City [1] and Boston [2] public school matching systems, creating a

centralized system for students and schools to express their preferences over each other while

also incorporating necessary logistical constraints, from distance of bus transportation to

keeping siblings in the same schools. Furthermore, Roth created the New England Program

for Kidney Exchange [20], facilitating a registry and matching program that pairs compatible

kidney donors and recipients.

The use of matching theory can even be seen on Harvard’s campus. The freshman seminar

program uses one version of the deferred acceptance algorithm to be explained in Chapter 2 to

place freshmen into seminars according to their ranked preferences as well as the professor’s

preferences over students given their application essays. In addition, the finance recruitment

process for roles in investment banking and sales and trading on Harvard’s campus has

unraveled in a similar fashion to the hospital-intern example. Just five years ago, students

applied for junior summer internships in their junior spring, receiving offers in March or

April. Three years ago, the recruiting timeline began inching earlier, and offers for junior

summer internships were given out by the end of junior fall. Two years ago, internship

offers were given out sophomore summer, and nowadays, students are asked to respond to

internship offers for their junior summer before sophomore spring has even ended. Even

worse, this has led to ‘re-negging’, where students who have confirmed their internship offers

will later reject it for another position. While financial recruiting may be a harder market

to tackle than the hospital-intern market, this type of unraveling is astonishingly similar to

the behavior discussed in Section 1.2.1.



Chapter 2
Introduction to Stable Matching

In this chapter, we will formally define the stable matching problem for the one-to-one and

many-to-one settings and also prove the existence of stable matchings in both cases.

2.1 One-to-One Matching

2.1.1 Formal One-to-One Model

To formalize the marriage problem, we define the following notation for a one-to-one match-

ing market. The stable marriage problem is defined such that:

• M is a finite set of n men, {m1, . . . ,mn},

• W is a finite set of v women, {w1, . . . , wv},

• M ∩W = ∅,

• P (i) with i ∈M ∪W is the strict preference relation of individual i over every member

of the opposite gender.

To be clear, say that man m1 prefers most to be married to woman w1, second to w2, and

so on. Then, we use � to denote the strict preference relation, and say that the preferences

of man m1 can be represented as P (m1) = w1 � w2 � · · · � wv. However, it is possible that

there are some women that man m1 finds unacceptable, and he would prefer to be single

rather than married to them. In this case, we include himself, m1 in the relation. If his

preferences are of the form P (m1) = w1 � m1 � w2 � · · · � wv, then his first choice is to

15



CHAPTER 2. INTRODUCTION TO STABLE MATCHING 16

be married to woman w1, and otherwise, he would prefer to be single (matched to himself)

over being married to any of the other women in the market. When considering individuals,

we can also write that w1 �m1 w2 if we want to specifically indicate that man m1 prefers

w1 over w2.

Definition 2.1 (One-to-One Matching). A matching µ is defined as a one-to-one correspon-

dence from the set M ∪W onto itself such that if µ(m) 6= m then µ(m) ∈ W and if µ(w) 6= w

then µ(w) ∈M for m ∈M and w ∈ W .

This means that if an individual is not single, then they must be matched to someone of the

opposite gender in a marriage. We refer to µ(x) as the match of x, and we require µ2(x) = x,

meaning that if man m is matched to woman w, then woman w is also matched to man m

(bilateral condition).

Definition 2.2 (Individual Rationality). A matching µ is individually rational if each agent

is acceptable to their respective spouse.

If a matching µ contains a pair (m,w) where at least one of the individuals would prefer to be

single than be matched to each other, the matching is not individually rational. An individ-

ually rational matching must always exist because the matching such that every individual

is single is one such example.

Definition 2.3 (Stability). A matching µ is stable if there are no blocking pairs (m,w) with

m ∈M,w ∈ W such that m �w µ(w) and w �m µ(m) and µ is individually rational.

In the context of the stable marriage problem, this means that there are no divorces, because

if a blocking pair (m,w) existed, m,w both prefer each other to their current partner, and

thus, would divorce their spouses to marry each other.

2.1.2 Existence of Stable Matchings

Given that matching pairs of men and women together such that no divorces occur seems

to be a difficult problem, it is surprising that Gale-Shapley [8] were able to constructively

prove that a stable matching always exists using the deferred acceptance algorithm.

Algorithm 2.4 (Deferred Acceptance). The procedure of the deferred acceptance algorithm

is as follows.

1. To start, each man proposes to his most preferred woman. Each woman rejects the

proposal of any man who is unacceptable to her, and each woman who receives more

than one proposal rejects all but her most preferred man of these. Any man whose

proposal is not rejected is engaged.
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2. At every following step, any man who was rejected at the previous step proposes to his

next highest choice, so long as there remains an acceptable woman to whom he has not

yet proposed. If at any step a man has proposed and been rejected by all acceptable

woman on his list, he issues no further proposals.

3. Each woman receiving new proposals rejects any from unacceptable men, and also re-

jects all but her most preferred among the group consisting of new proposers together

with any man she may have kept engaged from the previous step.

This algorithm stops after any step in which no man is rejected, because at this point, every

man is either engaged to some woman or has been rejected by every acceptable woman on his

list. If there are n men and n women, there are a maximum of n2 proposals to go through,

and this algorithm will run in O(n2) time. Moreover, the algorithm must always terminate

because there are only a finite number of men and women, with no man proposing more than

once to any woman. We call this algorithm deferred acceptance, because women are able to

keep the best available man at any step engaged, without immediately accepting him.

To better understand the deferred acceptance algorithm, consider the following example

below, with three men and three women.

P (m1) = w1 � w2 � w3 P (w1) = m3 � m1 � m2

P (m2) = w1 � w3 � w2 P (w2) = m2 � m1 � m3

P (m3) = w3 � w2 � w1 P (w3) = m1 � m2 � m3

Step 1: Each man proposes to his most preferred woman. m1,m2 both propose to w1 and

m3 proposes to w3.

Step 2: Since w1 has two proposals and prefers m1 to m2, w1 rejects m2. The current

matches are (m1, w1) and (m3, w3).

Step 3: Since both m1,m3 have engagements, only m2 proposes to his second choice, w3.

Step 4: w3 prefers m2 to m3 so w3 rejects m3. The current matches are (m1, w1) and

(m2, w3).

Step 5: Since both m1,m2 have engagements, only m3 proposes to his second choice, w2.

Step 6: All men and women now have matches, so the algorithm ends. Our final marriages

are (m1, w1), (m2, w3), and (m3, w2).

This leads us to the proof that shows the existence of a stable matching.
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Theorem 2.5 (Stable Matching). Given any set of strict preferences for men and women,

a stable matching always exists between the two sides of the market.

Proof. To prove that the matching µ derived from the deferred acceptance algorithm is

stable, consider for contradiction that some man m and some woman w are not married to

each other in µ, but m prefers w to his current match µ(m). Then, woman w must have

been acceptable to man m and thus, he must have proposed to her before proposing to his

current match µ(m). However, since he was not engaged to w when the deferred acceptance

algorithm stopped, this means that woman w must have at some point rejected man m for

someone she liked at least as well as him. Thus, while m may prefer woman w to µ(m), we

see that w must prefer her current matching µ(w) over man m. Thus, for any choice of man

m and woman w, (m,w) do not constitute a blocking pair. Thus, there are no blocking pairs

and µ is stable.

2.2 Many-to-One Matching

However, as discussed in the introduction, not all markets are one-to-one. For example, in the

hospital-intern market, many interns can be matched to one hospital. We will now define

the analogous mathematical language to discuss the many-to-one hospital-intern problem

and again, show the existence of stable matchings in this scenario as well.

2.2.1 Formal Many-to-One Model

The hospital-intern problem is defined such that:

• H is a finite set of hospitals {h1, . . . , hn},

• S is a finite set of students {s1, . . . , sm},

• H ∩ S = ∅,

• qhi
is the quota for hospital hi, a positive integer that indicates the maximum number

of seats hospital hi has to fill,

• P (i) for i ∈ H ∪ S is the strict preference relation for each hospital or student in the

market over every member of the opposite set.

Definition 2.6 (Many-to-One Matching). A matching µ is defined as a function from the

set H ∪ S to a set of unordered elements of H ∪ S such that



CHAPTER 2. INTRODUCTION TO STABLE MATCHING 19

1. |µ(s)| = 1 for every student s and µ(s) = s if µ(s) /∈ H

2. |µ(h)| = qh for every hospital h ∈ H and if the number of students in µ(h) = r < qh,

then µ(h) also contains qh − r copies of hospital h

3. µ(s) = h⇐⇒ s ∈ µ(h)

The conditions tell us a few things. First, every student is matched to either a hospital or

his/herself. Second, every hospital is matched to qh students and if the number of students

currently accepted does not hit the quota, the hospital will also be matched to itself. Lastly,

any student-hospital pair is bilateral.

Definition 2.7 (Group Preferences). The preference relation P#
h denotes preferences over

groups of students for each hospital h ∈ H. P#
h over sets of students is responsive to

preferences P (h) over individual students if for µ′(h) = µ(h) ∪ {σ1} \ {σ2} with σ1 /∈ µ(h)

and σ2 ∈ µ(h), then h prefers µ′(h) to µ(h) under P#
h if and only if h prefers σ1 to σ2 under

P (h).

In the marriage model, each individual’s preferences over different matchings only depended

on the spouse to who they were matched. While this is true for students in the hospital

admissions models, this is not true of hospitals, which may have preferences over groups

of students. For example, if a hospital is assigned their first and second choice in µ1 and

assigned their first and third choice in µ2, then the hospital would prefer µ1 to µ2. This

intuition is formalized in the definition of group preferences for hospitals P#
h .

Moreover, we require group preferences to be responsive, as defined below.

Definition 2.8 (Responsive Preferences). The preferences P#
h of hospital h over sets of

students is responsive if they are consistent with a complete, transitive preference relation

�h over students and a quota qc. Mathematically, for all S ′ ⊆ S with |S ′| < qh and any

students i, j ∈ S \ S ′, we have

1. (S ′ ∪ {i}) �#
h (S ′ ∪ {j})⇔ i �h j

2. (S ′ ∪ {i}) �#
h S ′ ⇔ i �h ∅

Furthermore, analogous definitions regarding stability follow in the many-to-one setting.

Definition 2.9 (Individual Rationality). A matching µ is individually rational if each stu-

dent s is acceptable to their matched hospital h and vice versa.

Definition 2.10 (Pairwise Stability). A matching µ is pairwise stable if there is no hospital-

student blocking pair (h, s) with h ∈ H, s ∈ S such that for some σ ∈ µ(h), µ(s) 6= h,

h �s µ(s), and s �h σ.
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However, since we are in the many-to-one setting, we can also consider the case where

a matching is blocked by a coalition of multiple students and hospitals as opposed to a

single hospital-student pair. Intuitively, this would mean that a set of multiple students and

hospitals in A could all get an assignment preferable to their assignment in µ by matching

among themselves rather than taking their assignment in µ.

Definition 2.11 (Group Stability). A matching µ is group stable if there is no coalition A

and alternative matching µ′ such that for all students s and all hospitals h in A:

1. µ′(s) ∈ A (every student in A who is matched by µ′ is matched to a hospital c ∈ A)

2. µ′(s) �s µ(s) (every student in A prefers their new match to their old one)

3. σ ∈ µ′(h) =⇒ σ ∈ A ∪ µ(h) (every hospital in A is matched at µ′ to a new student

only from A, but may continue to be matched with some of its old students from µ(h))

4. µ′(h) �h µ(h) (every hospital in A prefers its new set of students to its old one)

At first, the definitions of pairwise and group stability appear fundamentally different and

would seem to make the computation of stable matchings in the many-to-one setting much

more difficult. Whereas in the one-to-one setting, we were able to check all n2 blocking pairs,

the number of possible coalitions in the many-to-one setting is exponential. However, this

seemingly intractable problem is resolved by the following theorem, which shows that the

two definition of stability are in fact, equivalent. Hence, we only need to look at blocking

pairs rather than blocking coalitions in our many-to-one settings, significantly simplifying

the problem.

Theorem 2.12. A matching µ is group stable if and only if it is pairwise stable.

Proof. First, we will show if a matching µ is pairwise unstable, then it is also group unstable.

If a matching µ is pairwise unstable, then there is a hospital-student blocking pair (h, s).

However, this pair can also be considered a coalition A consisting of one hospital and one

student, who would be better off matching with each other rather than participating in the

matching µ.

Second, we will show if a matching is group unstable, then it is also pairwise unstable.

Consider the coalition A and alternative matching µ′ which cause matching µ to be group

unstable. Let hospital h be in the coalition A. Then, the conditions of group instability tell

us that µ′(h) �h µ(h). This means that there is a student s1 ∈ µ′(h) \ µ(h) and student

s2 ∈ µ(h) \ µ′(h) such that s1 �h s2. In words, this means that in the alternative matching

µ′, hospital h is matched to a more preferred student s1, whereas in matching µ, hospital h

is matched to a less preferred student s2. By the third condition from Definition 2.11, since
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s1 was not matched to hospital h in µ originally, s1 must be in the coalition A as well. Thus,

since s1 ∈ A and h �s1 µ(s1), we know that µ is pariwise unstable by the hospital-student

pair (h, s1).

2.2.2 Connecting Marriage Markets with Hospital Admissions

Consider the hospital admissions problem and the related marriage market where each hos-

pital h is broken into qh individual pieces, denoted by h1, . . . , hqh . Each of these pieces has a

quota of 1 with preferences over students identical to those of the original hospital h. Given

that a student’s preference list once consisted of hospitals, it now is modified by replacing a

hospital h with the list h1, . . . , hqh . If the preferences over individuals are strict, then there

is a one-to-one correspondence between matchings in the hospital admissions problem and

matchings in the newly constructed marriage market.

Theorem 2.13. A matching of the hospital admissions problem is pairwise stable if and

only if the corresponding matchings of the related marriage market are stable.

Proof. We will first show that if a hospital-student blocking pair exists in the hospital ad-

missions problem, then it will also cause a blocking pair to exist in the related marriage

market. Let the hospital-student blocking pair be (h, s) for h ∈ H, s ∈ S. Then, (h1, s) form

a blocking pair as well in the related marriage market. Hence, a pairwise unstable hospital

admissions problem implies an unstable marriage market.

Second, we will show that if a blocking pair exists in the related marriage market, then

a hospital-student blocking pair exists in the hospital admissions problem as well. Let

the blocking pair in the marriage market be (hi, s) for some i ∈ [1, qh] since the student is

indifferent over the hospitals h1, . . . , hqh . Then, the corresponding hospital-student pair (h, s)

also blocks the matching in the hospital admissions problem. Thus, an unstable marriage

market implies that the hospital admissions problem is also pairwise unstable.

Given the above theorem, we know that the set of stable matchings for the hospital admis-

sions problem cannot be empty. Using the description of the one-to-one deferred acceptance

algorithm above, we can easily modify it to solve the hospital admissions problem as well.

If the students are proposing, then the hospitals will start to reject acceptable students only

when its quota qh is full, in the same way that women would reject all but their most ac-

ceptable man in each turn of the man-proposing one-to-one algorithm. If the hospitals are

proposing, then each hospital makes as many proposals at each step as they need to fulfill its

quota of engagements, meaning that if a hospital currently has n engagements with n < qh,
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then it should make qh − n proposals in the next step to have a total of qh engagements.

Thus, not only do we know that a stable matching exists in the many-to-one setting, but we

can also explicitly find one such matching.

2.2.3 The NMRP Medical Matching Algorithm

Although the previous section extends the one-to-one algorithm of deferred acceptance to

compute stable matchings in the many-to-one setting, the actual algorithm implemented in

the medical match is slightly different. We will now describe it in detail according to the

description given in [22].

Algorithm 2.14 (NMRP). Each hospital program rank orders the students who have applied

to it and each student orders the hospital programs to which they have applied to, on both

sides, indicating any which are unacceptable. At the central clearinghouse, any student or

hospital that has been marked unacceptable will be removed off the corresponding hospital

or student’s list of preferences, so that the list only contains students or hospital programs

which are acceptable to the other. There are two phases, a matching phase and a tentative

assignment and update phase.

In the matching phase, we first check if there are any students and hospital programs which

are mutually top-ranked (1 : 1 step). If a hospital has a quota of qhi
, then the qhi

highest

students in its ranking are considered top-ranked. If no such matches are found, we move

on to the 2 : 1 step, where the second ranked hospital program on each student’s ranking is

compared with the top-ranked students on that hospital’s rankings. At any point when no

matches are found, the algorithm moves on to the next step such that the k : 1 step of the

matching phase tries to find hospital-student pairs where the student is top-ranked on the

hospital ranking list and the hospital is k-ranked on the student ranking list. At any step

where matches are found, we move on to the tentative assignment and update phase.

In the tentative assignment and update phase after the k : 1 step of the matching phase, each

student who is a top-ranked choice of their k-ranked hospital is tentatively assigned to that

hospital. Then, the rankings of each student and hospital are updated as follows. Because

student si is tentatively assigned to its k-ranked hospital, any hospital on its list below their

k-th choice is removed. Similarly, the student si is deleted from the ranking list of any

hospital that was deleted from the ranking list of si. If a hospital’s top-ranked candidate is

deleted, a lower-ranked student will move up to take their place since the updated ranking

list has fewer students but the hospital has the same quota. Therefore, the updated rankings

of each hospital now include only the applicants who haven’t yet been tentatively assigned to
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a hospital they prefer. After the rankings have been updated, the algorithm goes back to the

matching phase starting with the 1 : 1 step again.

As the algorithm moves back and forth between the two phases, any new tentative matches

found for a student replace any prior tentative matches involving the same student, since a

new match can only improve the student’s tentative assignment. The algorithm terminates

when no new tentative matches are found. At that point, all tentative matches become final

and any student or hospital position which was not tentatively matched is left unassigned.

We will now prove that this algorithm also leads to stable matchings, which explains why

the centralized medical matching system had such high voluntary participation rates and

was such a popular alternative to individually arranging residency programs for oneself.

Amazingly, this algorithm that preserves stability was developed independently of the theo-

retical literature of matching markets, and it was not until 1984 that the medical matching

algorithm was shown to have the same theoretical properties as the deferred acceptance

algorithm developed by Gale-Shapley in 1962.

Theorem 2.15. The NMRP algorithm is a stable matching mechanism, meaning that it

produces a stable matching with respect to any stated preferences.

Proof. When the algorithm terminates, each hospital hi is matched with the top qi choices

on its final updated rank-order list because the algorithm cannot terminate while tentative

k : 1 matches can still be found. This assignment is also stable since any student sj who

some hospital hi originally ranked higher than one of its final assignees was deleted from hi’s

ranking when sj was given a tentative assignment higher in his or her ranking than hospital

hi. Thus, the final assignment gives student sj a position he or she ranked higher than

hospital hi, and the final matching cannot be unstable with respect to any possible blocking

pair (hi, sj).

2.3 Chapter Summary

To conclude this chapter, we see that stable matchings exist for both the one-to-one and

many-to-one matching settings, and similar ideas of tentative engagement or assignment of

women to men or students to hospitals can be applied to construct this stable matching.

This chapter provides the mathematical formalisms that allow us to precisely speak about

these concepts prove the existence of and construct explicit stable matchings for these types

of matching problems. As we can see from the NMRP algorithm for the medical residency
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match, the proof of the existence of stable matchings in every scenario is critically important

to being able to use this stable matching algorithm year after year. Similarly, for other

applications, such as urban high school admissions, the theoretical guarantee of the existence

of at least one stable matching is crucial for school districts to be able to use this method

consistently and continuously.



Chapter 3
Structures of Stable Matchings

Now that we have laid the groundwork to formalize and talk about matching problems, let us

look at the structure of stable matchings in both the one-to-one and many-to-one settings. In

particular, although we have shown that at least one stable matching exists, we would like to

understand whether there are multiple stable matchings possible and how to compare these

matchings. In addition, we hope to understand how the set of stable matchings compares

on metrics like Pareto optimality to the general set of possible matchings.

3.1 Structures of One-to-One Matchings

In an above subsection, we demonstrated one example of deferred acceptance. Now, let us

provide a second example in order to understand the types of stable matchings that exist.

3.1.1 Deferred Acceptance Example, Revisited

In the description of the deferred acceptance algorithm, we have men propose, but men and

women play symmetrical roles in the marriage market, so we can consider the matching that

occurs when women propose. Let us call the matching from Section 2.1.2 µM to denote the

fact that men propose.

Now, let us now consider the matching µW , which results if the women propose instead of

the men, while keeping the same preferences as the example in Section 2.1.2. Given that the

first-choice preferences of each woman is different, we only need to complete one step of the

25
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deferred acceptance algorithm to reach a stable matching, namely that µW consists of the

marriages (w1,m3), (w2,m2), and (w3,m1).

Note that all women clearly prefer µW to µM , as in µW , each woman marries their first choice

man, whereas in µM , each woman marries either their second or last choice man. Similarly,

note that all men prefer µM to µW . In µM , each man marries either their first or second

choice woman, whereas in µW , each man marries their last choice woman.

This example elucidates three points. Firstly, there may be more than one stable matching,

and in this section, we find two distinct stable matchings by switching which side of the

market gets to propose in the deferred acceptance algorithm. Secondly, one stable matching

may be unilaterally preferred by one side of the market compared to another stable matching.

Lastly, we see that the side of the market that proposes gets more favorable outcomes in

their matches.

3.1.2 Comparing Stable Matchings

To formalize our comparison of different stable matchings, let µ �M µ′ denote that all men

like matching µ at least as much as µ′, with at least one man preferring µ to µ′ outright.

Mathematically, we would say that µ(m) �m µ′(m) for all m ∈ M , and µ(m) �m µ′(m)

for at least one man m ∈ M . Similarly, µ �M µ′ implies that either µ �M µ′ or all men

are indifferent between the two matchings. Unlike an individual’s preference relation �i for

i ∈ M ∪W , the preference relation �M , representing the common preferences of all men,

is a partial ordering. This is because it is possible for some men to prefer µ and others to

prefer µ′, so there is no common agreement about which matching is preferred by all. We

can similarly define �W and �W for women, and like individual preferences, these common

preferences are also transitive.

Definition 3.1 (M-Optimal). A stable matching µ is M-optimal if every man likes it at least

as well as any other stable matching, that is, if for every other stable matching µ′, µ �M µ′.

Definition 3.2 (W-Optimal). A stable matching ν is W-optimal if every woman likes it

at least as well as any other stable matching, that is, if for every other stable matching ν ′,

ν �W ν ′.
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3.1.3 Optimal Stable Matchings

Definition 3.3 (Achievable). A woman w and a man m are achievable for each other in a

marrige market if m and w are paired in some stable matching.

Based on this definition, if men and women all have strict preferences in our marriage market,

each individual has only one favorite match among their set of achievable spouses. Thus, a

M-optimal stable matching would naturally match each man to his most preferred achievable

woman and similarly, a W-optimal stable matching must match each woman to her most

preferred achievable man. This means there is at most one M-optimal stable matching and

one W-optimal stable matching, and we will prove that these matchings do, in fact, exist.

Theorem 3.4. When all men and women have strict preferences, there always exists an M-

optimal stable matching and a W-optimal stable matching. The M-optimal stable matching

µM is produced by deferred acceptance with men proposing and the W-optimal stable matching

µW is produced by deferred acceptance with women proposing.

Proof. We seek to show using induction that when men propose using deferred acceptance,

no man is ever rejected by an achievable woman. Thus, the stable matching µM that is

produced must match each man to his most preferred achievable woman and is the unique

M-optimal stable matching.

First, assume that up to step n− 1 in the deferred acceptance procedure, no man has been

rejected yet by any woman who is achievable for him. In step n, suppose that woman w

rejects man m. We must show that w is not achievable for m here as well by considering

two cases.

Case 1: If woman w rejects man m as unacceptable because she would prefer to be single

rather than marry man m, then woman w is unachievable for man m and we are done.

Case 2: If woman w rejects man m in favor of man m′, to whom she stays engaged to,

then she prefers m′ to m. The deferred acceptance procedure tells us that m′ must prefer

w to any woman except for those who have already rejected him in a previous step, who by

the inductive assumption, are unachievable for him. Consider for contradiction a matching

µ that matches m to w and everyone else to an achievable mate. Then, m′ prefers woman w

to his current match µ(m′). Thus, (m′, w) form a blocking pair because w prefers m′ to m

and m′ prefers w to µ(m′), implying the hypothetical matching µ is unstable. Thus, there

are no stable matchings which pair m and w, so they are unachievable for each other and

prove the inductive step.
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Given this theorem, agents on one side of the market are in agreement on the best stable

matching when preferences are strict, and thus, have a common interest regarding the set

of stable matchings. In fact, it turns out that agents on opposite sides of the markets have

opposite interests in this regard, and the optimal stable matching for one side of the market

is the worst stable matching for agents on the other side of the market. Moreover, any stable

matching that is better for all men is worse for all women, and vice versa.

Lemma 3.5. When all agents have strict preferences, if µ and µ′ are stable matchings, then

all men like µ at least as well as µ′ if and only if all women like µ′ at least as well as µ.

More concisely, µ �M µ′ ⇐⇒ µ′ �W µ.

Theorem 3.6. When all agents have strict preferences, the M-optimal stable matching is

the worst stable matching for the women and it matches each woman with her least preferred

achievable mate. Similarly, the W-optimal stable matching matches each man with his least

preferred achievable mate.

Proof. Let µ, µ′ be stable matchings and assume that µ �M µ′. Assume for contradiction

that we do not have µ′ �W µ. Then there must exist some woman w who prefers µ to µ′,

meaning µ(w) �w µ
′(w). Because individuals have strict preferences and at least one woman

has a different mate in µ than in µ′ because at least one man does and the marriage are

bilateral, we see that woman w must have a different spouse in µ than in µ′. Thus, man

m = µ(w) must also have a different spouse in µ than in µ′. Since all stable matchings are

individually rational, the fact that w prefers µ(w) to µ′(w) implies w is not single at µ. Since

man m also has strict preferences, then (m,w) forms a blocking pair for the matching µ′,

which contradicts the original assumption that mu′ is stable. Thus, µ′ �W µ as desired.

While we have discussed the M and W-optimal stable matchings at length, the set of stable

matchings is not limited to just these. In fact, there can exist a much larger set of stable

matchings which vary in optimality for the two sides of the market.

3.1.4 Lattice Structure of Stable Matchings

Definition 3.7 (Lattice). A lattice is a partially ordered set L for which any two of its

elements a, b have a supremum, denoted a ∨ b, and an infimum, denoted by a ∧ b.
Definition 3.8 (Distributive Lattice). A lattice is distributive if and only if for all a, b, c ∈ L
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the two following conditions hold

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

Using these definitions of algebraic lattices, we provide three theorems linking the structure

of stable matchings to lattice theory.

Theorem 3.9. When all preferences are strict, if µ, µ′ are stable matchings, then the func-

tions λ = µ ∨M µ′ and ν = µ ∧M µ′ are both stable matchings [13].

Proof. We need to show that both λ and ν are stable matchings. First, we show λ is a

matching by showing that λ(m) = w if and only if λ(w) = m. Because both µ, µ′ are stable,

we know that λ(m) = w implies λ(w) = m.

In the other direction, let us define the set

M ′ = {m such that λ(m) is in W} = {m such that µ(m) or µ′(m) is in W}

Similarly, define the set

W ′ = {w such that λ(w) is in M} = {w such that µ(w) or µ′(w) is in M}

Using the direction proved above, we know that λ(M ′) is contained in W ′. However, we

also know that the size of λ(M ′) is the same as M ′ because λ(m) = λ(m′) = w only if

m = m′ = λ(w). Furthermore, λ(M ′) is at least as large as µ(W ′), so λ(M ′) and W ′ are the

same size and λ(M ′) = W ′. Thus, for w ∈ W ′, λ(w) = m for some m ∈M ′ so λ(w) = m. If

w /∈ W ′ then λ(w) = w. This means λ(w) = m implies λ(m) = w. This shows that λ is a

matching.

Now, we will prove that λ is stable. Suppose for contradiction that (m,w) is blocking λ.

Then

w �m λ(m) =⇒ w �m µ(m) =⇒ w �m µ′(m)

On the other hand, we also have m �w λ(w). Thus, (m,w) blocks the matching µ if λ(w) =

µ(w) and blocks the matching µ′ if λ(w) = µ′(w). In both cases, we get a contradiction,

since both µ, µ′ are stable and cannot have any blocking pairs. Thus, λ is a stable matching.

By a symmetric argument, we can show that ν is also a stable matching.
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Corollary 3.10. When preferences are strict, the set of stable matchings is a distributive

lattice under the common order of men dual to the common order of women.

Proof. This corollary follows directly from Theorem 3.9.

Mathematically, we can also see that both Theorem 3.9 and Corollary 3.10 are direct results

of Tarski’s fixed point theorem [7, 11].

Not only do we see structure at the macro level, using the lattice theory language of meets

and joins to understand the set of stable matchings, but there is also structure at the micro

level in the set of individual agents involved in every stable matching.

Theorem 3.11 (Lone Wolf Theorem). In a marriage market with strict preferences, the set

of people who are single is the same for all stable matchings [18].

3.1.5 Pareto Optimality

While we have seen that the M-optimal stable matching is the best stable match men can

achieve, a stronger characteristic of matchings that we might care about is Pareto optimality,

which measures efficiency.

Definition 3.12 (Weak Pareto Optimality). A matching µ is weakly Pareto optimal for men

if there are no alternative matchings that would would be strictly preferred by all men [21].

Definition 3.13 (Strong Pareto Optimality). A matching µ is strongly Pareto optimal for

men if there are no alternative matchings that would would be strictly preferred by some men

and weakly preferred by all men. This means that the matching is liked at least as well by all

men and preferred by some men.

In particular, we are interested to see if there is an unstable matching that all men would

prefer, indicating that the men are paying a price for stability. However, we see that this is

not true.

Theorem 3.14. There is no individually rational matching µ (stable or not) such that

µ �m µM for all m ∈M . This means µM is weakly Pareto optimal for all men M .

Proof. Let us consider the man-proposing deferred acceptance algorithm. Assume for contra-

diction that a better matching µ existed. Then, it would match every man m to some woman

w who had rejected him in the algorithm in favor of some other man m′. This means that

that set of women, µ(M), would have also been matched under µM , more formally written as

µM(µ(M)) = M . However, since all men in M are matched under the M-optimal matching

µM , then any woman who got a proposal in the last step of the algorithm has not rejected
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any acceptable man, since the algorithm stops as soon as every woman in µM(M) holds an

acceptable proposal. Since every man prefers µ to µM , this would mean that such a woman

would have had to be single at µ, which contradicts the fact that µM(M) = µ(M).

Through the below example, we see that the M-optimal matching, while weakly Pareto

optimal, is not strongly Pareto optimal.

Consider the following preferences for a set of three men and three women.

P (m1) = w2 � w1 � w3 P (w1) = m1 � m2 � m3

P (m2) = w1 � w2 � w3 P (w2) = m3 � m1 � m2

P (m3) = w1 � w2 � w3 P (w3) = m1 � m2 � m3

Then using the man-proposing deferred acceptance algorithm, we get than the M-optimal

matching is

µM(m1) = w1 µM(m2) = w3 µM(m3) = w2

However, the below matching

µ(m1) = w2 µ(m2) = w3 µ(m3) = w1

leaves m2 with the same match as he had under µM , but improves the matches of m1 and

m3. Thus, the M-optimal matching is not strongly Pareto optimal, and there may be some

non-stable matchings which are liked at least well as µM by all men and preferred by some

men.

3.2 Structures of Many-to-One Matchings

In this section, we will see that the results of optimal stable matchings extend from the

one-to-one to the many-to-one setting, wherease the Pareto-optimality conditions no longer

hold true when looking at the many-to-one market.

3.2.1 Optimal Stable Matchings

In Theorem 2.15, we proved that the NMRP algorithm gives a stable matching. Extending

the one-to-one definition, a hospital H and student s are achievable if there is some stable
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matching in which they are matched. For each hospital Hi with quota qi, we can define

ai to be the number of achievable students, and let ki = min(ai, qi). Thus, for any set of

preferences submitted by hospitals over students, the NMRP algorithm produces a matching

that is hospital-optimal, which we will now prove.

Theorem 3.15. For any submitted list of strict preferences over individuals, the NMRP

algorithm produces a matching that gives each hospital Hi its ki highest ranked achievable

students.

Proof. In order to show that the final assignment gives each hospital its top qi achievable

students, whether it has many achievable students when ai > qi or all its achievable students

if ai < qi, it is equivalent to show that no achievable student is ever deleted from a hospital’s

rank-order list. We will proceed by induction.

Suppose that up to the r-th iteration of the algorithm, no student has been deleted from

the ranking of a hospital for whom they are achievable and that on the (r + 1)-th iteration,

student sj is tentatively matched with hospital Hi and deleted from the ranking of hospital

Hk. Then, any assignment that matches sj with Hk and assigns achievable matches to Hi

must be unstable for two reasons. First, Hi �sj Hk. Second, because sj was top-ranked by Hi

at the end of the r-th iteration when no achievable students had yet been deleted from Hi’s

rank-order list, sj must be ranked higher by Hi than one of its assignees. Therefore, sj is not

achievable for Hk. Therefore, no achievable student will ever deleted from a hospital’s rank

order list and the final assignment must give each hospital its top qi achievable students.

Corollary 3.16. When preferences are strict, there exists a hospital-optimal stable matching

that every hospital likes as well as any other matching, and a student-optimal stable matching

that every student likes as well as any other stable matching.

Proof. The existence of the hospital-optimal stable matching follows from the preceding

theorem. The existence of the the student-optimal stable matching when preferences are

strict follows directly from the one-to-one setting.

Since the matching found is the unique hospital-optimal stable matching, hospitals ought to

prefer the matching from the NMRP algorithm to any other stable matching possible given

the preference lists. In fact, this result is stronger than the one-to-one setting. Whereas in

the M-optimal matching, the men receive their most preferred achievable mate, in the many-

to-one setting, each hospital is able to receive its ki most preferred achievable students.
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3.2.2 Geographic Constraints

At the end of Section 3.1.4, we see that the set of single individuals is the same in every

stable matching. This result extends to the many-to-one setting as follows.

Theorem 3.17. When all preferences over individuals are strict, the set of students admitted

and seats filled in the hospital-intern problem is the same at every stable matching [25].

Proof. This proof follows directly from the one-to-one result (Theorem 3.11) and the equiv-

alence of the hospital-intern problem with the related marriage markets problem (Theorem

2.13).

Unlike the one-to-one setting, this has direct implications in the many-to-one setting of

the hospital-intern market. Using the NMRP algorithm, it was noticed that many rural

hospitals have difficulty filling positions and are largely filled with foreign students. In

particular, this has led to concerns about the quality of medical care in rural communities.

Given this problem, it has been proposed to alter the NMRP algorithm so as to equalize

the distribution of interns across urban and rural hospitals. However, it is highly difficult

to modify the algorithm to more fairly re-distribute interns across US hospitals while still

maintaining the stability constraint. In fact, Theorem 3.17 demonstrates that this goal is

impossible, due to the structural limitations of who gets assigned in every stable matching.

3.2.3 Pareto Optimality

In contrast with the Pareto optimality results from the one-to-one matching setting, similar

results do not hold for the hospital-intern model.

Theorem 3.18. When preferences over individuals are strict, the student-optimal stable

matching is weakly Pareto optimal for students, but the hospital-optimal stable matching

may not be weakly Pareto optimal for hospitals.

Proof. The first part can be proved by looking at the weak Pareto optimality result from

one-to-one matching in Theorem 3.14 and noting that the set of stable matchings from the

hospital-intern model and the related marriage market problem are equivalent.

The second part can be shown via counterexample. Consider the set of hospitals {h1, h2, h3}
and set of students {s1, s2, s3, s4}, with qh1 = 2 and qh2 = qh3 = 1. The preferences are given
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below.

P (s1) = h3 � h1 � h2 P (h1) = s1 � s2 � s3 � s4

P (s2) = h2 � h1 � h3 P (h2) = s1 � s2 � s3 � s4

P (s3) = h1 � h3 � h2 P (h3) = s3 � s1 � s2 � s4

P (s4) = h1 � h2 � h3

The only stable matching that is hospital-optimal is µH given by

µH(h1) = s3, s4 µH(h2) = s2 µH(h3) = s1

However, the matching µ given by

µ(h1) = s2, s4 µ(h2) = s1 µ(h3) = s3

gives both hospitals h2, h3 their first choice student over their second choice student, so they

both prefer µ to µH . Since h1 gets their second and fourth choice students over their third

and fourth choice students, h1 also prefers µ to µH , meaning every hospital prefers µ to µH

and the hospital-optimal stable matching may not be even weakly Pareto optimal. Note that

µ is not a stable matching because (h1, s1) are a hospital-student blocking pair, as h1 would

prefer to be matched to s1, s4 over s2, s4, and s1 prefers h1 to h2.

3.3 Chapter Summary

In Chapter 2, we saw direct analogies between the one-to-one and many-to-one settings in

the existence of stable matchings through constructive algorithms. However, in this chapter,

we see that the results from one-to-one matching do not always transfer to the many-to-

one matching setting. While there are direct connections between the set of optimal stable

matchings as well as the set of individuals matched in each stable matching, characteristics of

efficiency such as weak Pareto optimality do not hold in the many-to-one setting as they do in

the one-to-one setting. Thus, when implementing matching algorithms in practice, especially

in many-to-one settings, the efficiency-stability tradeoff must be considered. Additionally, we

see that the lattice structure of the set of stable matchings implies that any implementation

of two-sided matching algorithms in the real-world will favor one side of the market. Hence,

the choice of who gets to propose in matching mechanisms such as deferred acceptance

remains in question for any policymaker seeking to implement them.



Chapter 4
Strategic Incentives for Individual Agents

Above, we looked at the structure of the matchings we might observe, and crucially, assumed

that each individual submitted truthful preferences to the centralized algorithm. However,

we can also ask how we might expect individual agents in these markets to behave and

whether they ought to be truthful in their stated preferences as previously assumed. Given

that preferences are actually private information, each individual is capable of submitting

non-truthful preferences to the clearinghouse in what shall henceforth be known as strategic

behavior.

4.1 One-to-One Questions

4.1.1 Example of Strategic Behavior

Consider the following set of preferences for a market with two men and two women.

P (m1) = w1 � w2 � m1 P (w1) = m2 � m1 � w1

P (m2) = w2 � w1 � m2 P (w2) = m1 � m2 � w2

Using the deferred acceptance algorithm when men propose, the M-optimal stable matching

would be

(m1, w1), (m2, w2)

However, consider the following misreport of w2’s preferences, where P (w2) = m1 � w2 �
m2, meaning w2 finds m2 unacceptable. In this case, the new stable matching produced

35
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would be

(m1, w2), (m2, w1)

By truncating and misreporting her preferences, w2 is able to force a better stable matching

for herself, since she prefers being matched to m1 than m2.

To formalize this notion of truthful reporting, we define a concept known as dominant strat-

egy incentive compatibility.

Definition 4.1 (Dominant Strategy Incentive Compatibility). A mechanism is dominant

strategy incentive compatible (DSIC) if truth-telling is a weakly dominant strategy, meaning

that every individual fares best, or at least not worse, regardless of what other agents do.

The notion of DSIC is the strongest notion of incentive compatibility, the idea that every

participant can achieve their best outcome by acting truthfully. DSIC mechanisms are

also called truthful or strategyproof, because strategic considerations, such as preference

misrepresentation, would not help any agent achieve a better outcome. Thus, we argue that

the stable matching mechanism is not strategyproof. By definition, this means that there

is some incentive for some individual in the market to misreport their preferences to the

clearinghouse, because they will receive a better matching than had they submitted their

preferences truthfully.

This example naturally leads to the following theorem.

Theorem 4.2 (Impossibility Theorem). No stable matching mechanism exists for which

stating the true preferences is a dominant strategy for all agents. Alternatively, no stable

matching mechanism is also DSIC.

Proof. In order to prove this, we need to demonstrate a particular marriage market such that

for any stable matching mechanism, truth telling is not a dominant strategy for all agents.

We are able to demonstrate this for a marriage market with two men and two women and

since this smaller market can be embedded in any large marriage market without changing

their preferences, the result follows for all marriage markets.

Consider the same set of preferences as before, with

P (m1) = w1 � w2 � m1 P (w1) = m2 � m1 � w1

P (m2) = w2 � w1 � m2 P (w2) = m1 � m2 � w2

There are two stable matchings, µ, ν with µ(mi) = wi for i ∈ {1, 2} and and ν(mi) = wj

for i, j ∈ {1, 2}, j 6= i. Therefore, any stable matching mechanism would result in either
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µ, ν given the individuals’ stated preferences. In the above example, we show a profitable

manipulation for w2. In the symmetric case for ν, there is a profitable manipulation for m2

with the misreported preferences P (m2) = w2 � m2 � w1 which leads to a more profitable

stable matching for m2, where he is matched to w2.

Furthermore, we see that this tension between incentive compatibility and stability is perva-

sive. We might hope that certain stable matching mechanisms are better than others, rarely

giving individuals such strategic incentives to misreport preferences. However, the following

theorem shows that one agent usually has an incentive to strategically deviate.

Theorem 4.3. When any stable mechanism is applied to a marriage market in which pref-

erences are strict and there is more than one stable matching, then at least one agent can

profitably misreport their preferences, assuming that the others tell the truth. Moreover,

this agent can misreport their preferences so that they are matched to their most preferred

achievable mate under the true preferences at every stable matching.

Proof. From our proof statement, we know µM 6= µW . Suppose that when all agents state

their true preferences, the mechanism results in a stable matching µ 6= µW . Let w be any

woman such that µW (w) �w µ(w), and now, let w misreport her preferences by stating that

she would prefer to be single rather than marry any man who ranks below µW (w) on her

true preference list.

The matching µW will still be stable under these altered P ′ since there are now fewer possible

blocking pairs. Given that the set of single individuals is the same for all stable matchings,

we see that w is not single in µ′ either and hence is matched with someone she likes at least

as much as µW (w), since all other less acceptable men have been removed from her list.

Since our new matching is also stable under the original preferences, we actually have that

µ′(w) = µW (w), which is preferred by w to her original matching µ(w). Thus, µ′ �w µ, and

a symmetric argument can be made for any man m who strictly prefers µM .

While the above theorem might seem concerning, we also see that there are limits to how

far an arbitrary stable matching mechanism can be manipulated.

4.1.2 Limits on Strategic Manipulation

Lemma 4.4 (Blocking Lemma). Let µ be any individually rational matching with respect to

strict preferences P , and let M ′ be all men who prefer µ to µM . If M ′ is nonempty, there is

a pair (m,w) that blocks µ such that m ∈M \M ′ and w ∈ µ(M ′) [9].
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Proof. We can consider this in two cases.

Case 1: µ(M ′) 6= µM(M ′). Choose w ∈ µ(M ′) \ µM(M ′), for example, w = µ(m′). Then,

m′ prefers w to µM(m′) so w prefers µM(w) = m to m′. But m is not in M ′ since w is not

in µM(M ′), so m prefers w to µ(m). Thus, (m,w) blocks µ.

Case 2: µM(M ′) = µ(M ′) = W ′. Let w be the last woman in W ′ to receive a proposal

from an acceptable member of M ′ in the deferred acceptance algorithm. Since all w ∈ W ′

have rejected acceptable men from M ′, w had some man m engaged when she received this

last proposal. Then, (m,w) is the desired blocking pair for the following reason. First, m

is not in M ′ because if so, after having been rejected by w, he would have proposed again

to another member of W ′, contradicting the fact that w received the last proposal. But m

prefers w to his mate under µM and since he is no better off under µ, he prefers w to µ(m).

On the other hand, m was the last man to be rejected by w so she must have rejected her

mate under µ before she rejected m and hence she prefers m to µ(w), so (m,w) blocks µ as

claimed.

Theorem 4.5 (Limits on Successful Manipulation). Let P be the true preferences (not

necessarily strict) of the agents, and let P ′ differ from P in that some coalition C of at least

two agents have misreported their preferences. Then, there is no matching µ, stable for P ′,

which is preferred to every stable matching under the true preferences P by all members of

the coalition C.

Proof. Consider for contradiction that some nonempty subset M ′ ∪W ′ of men and women

misreport their preferences and are strictly better off under some matching µ, stable under

P ′, than under any stable matching under P . This would imply that

µ(m) �m µM(m) for every m ∈M ′

µ(w) �w µW (w) for every w ∈ W ′

The above relations imply that µ must be individually rational, and by applying the blocking

lemma, we are done.

Thus, while truth-telling may not be a dominant strategy for every agent in the market,

only individuals, not coalitions, can successfuly manipulate the market by mis-reporting

their preferences to improve their match.
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4.1.3 Strategic Incentives in Optimal Stable Matchings

Furthermore, the strategic incentives of individual agents is also linked to the structure of

the set of stable matchings. More specifically, truth-telling is a dominant strategy for the

agents on the proposing side of the market, whereas there are strategic incentives for agents

on the other side of the market to misrepresent their preferences.

Theorem 4.6. The mechanism that yields the M-optimal stable matching (in terms of stated

preferences) makes it a dominant strategy for each man to state his true preferences.

Proof. This follows directly from the preceding theorem if we take the coalition C to be the

set of all men.

Corollary 4.7. When preferences are strict and the M-optimal stable mechanism is em-

ployed, there will be an incentive for some woman to misrepresent her preferences whenever

more than one stable matching exists.

Proof. This corollary follows directly from Theorem 4.5, Theorem 4.4 and Theorem 4.2.

4.2 Many-to-One Questions

In the one-to-one setting, we saw that truth-telling was a dominant strategy for the proposing

side of the market. However, we see that this is not necessarily true in the many-to-one

setting.

Theorem 4.8. In the hospital-intern problem, no stable matching mechanism exists that

makes it a dominant strategy for all hospitals to state their true preferences.

Proof. Since a stable matching mechanism that gives all hospitals a dominant strategy would

do so for all examples, it suffices to show for one example that no such stable matching

mechanism exists.

Consider the example used to prove Pareto optimality from before, with the set of hospi-

tals {h1, h2, h3} and set of students {s1, s2, s3, s4}, with qh1 = 2 and qh2 = qh3 = 1. The
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preferences are given below.

P (s1) = h3 � h1 � h2 P (h1) = s1 � s2 � s3 � s4

P (s2) = h2 � h1 � h3 P (h2) = s1 � s2 � s3 � s4

P (s3) = h1 � h3 � h2 P (h3) = s3 � s1 � s2 � s4

P (s4) = h1 � h2 � h3

The hospital-optimal outcome gives us

µ(h1) = {s3, s4}, µ(h2) = {s2}, µ(h3) = {s1}

Moreover, this matching µ is the unique stable matching, so that µ = µH = µS, and any

stable matching procedure must select this outcome.

Now, consider if hospital h1 were to mis-state its preferences and give

P ′(h1) = s1 � s4 � h1,

meaning that hospital h1 now finds students s2, s3 unacceptable. This alternative set of

preferences also produces an unique stable matching, given by

µ′(h1) = {s1, s4} µ′(h2) = {s2} µ′(h3) = {s3}

Since µ′(h1) �h1 µ(h1) because it would prefer its first and fourth choice as opposed to

its third and fourth choice, hospital h1 does better by mis-stating its preferences rather

than telling the truth. This completes the proof, because in this case, no stable matching

mechanism can make it a dominant strategy for h1 to state their true preferences.

This theorem leads to further corollaries which show that the one-to-one matching results of

Lemma 4.4 and Theorem 4.5 do not extend to the many-to-one setting.

Corollary 4.9. In the hospital-intern problem, a coalition of agents, or even a single agent,

may be able to misrepresent their preferences so that they do better than at any stable match-

ing under true preferences.

Despite the fact that Theorem 4.8 tells us that no stable matching mechanism gives hospitals

a dominant strategy, the student situation mirrors that of the one-to-one marriage market.

Theorem 4.10. A stable matching procedure that yields the student-optimal stable matching

makes it a dominant strategy for all students to state their true preferences.
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Proof. If the theorem were false, then there would be a hospital-student matching market in

which a student could profitably misreport their preferences. Given that the hospital-intern

problem can be converted to a marriage market problem, this would also mean that they

can profitably misreport their preferences in the corresponding marriage problem. However,

we know this is not possible in the one-to-one scenario from Theorem 4.6.

4.3 Chapter Summary

In Chapter 4, we show that individual agents in the one-to-one setting and coalitions of

agents in the many-to-one setting have strategic incentives to mis-report their preferences.

Extending our conclusions from the last chapter, both the strategic results of this chapter

and the structure of the set of stable matchings inherently imply that one side of the market

is favored. Given that only one side of the market has incentive to truthfully report their

preferences, to decide which side of the market gets to propose in the real-world is a policy

decision.

For example, in Boston public schools, it is well documented that wealthier parents better

understand how to strategically mis-report their children’s school preferences in comparison

to poorer parents, and as a result, had a higher probability of getting their children into

better schools [19]. To ameliorate this educational inequity, when deferred acceptance was

implemented in Boston public schools, it was decided that students should propose so that

the incentive to misreport preferences was removed for all parents. In addition, it was

assumed that there would be little incentive for schools to mis-report their preferences, as

the majority of schools desire similar sets of characteristics, from good test scores to a diverse

student body.

Another example of this is the switch in the medical match from the hospital-proposing

to the doctor-proposing stable matching mechanism [27]. Given that only one side of the

market has incentive to truthfully report their preferences, the switch to the doctor-proposing

mechanism was driven in large part because of a desire to make the problem strategically

simple for doctors, as well as a recognition that there was no way to make the mechanism

strategyproof for hospitals.

Thus, when considering the implementation of matching algorithms in real-world settings,

it is absolutely necessary to consider these theoretical results demonstrating an incentive

to strategic manipulate stable matching mechanisms in order to understand how real-world

agents might act in such a market.



Part II

Deep Learning for Matching Problems
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Chapter 5
Deep Learning for Economic Theory

In this chapter, we will first motivate the use of deep learning methods to approach economic

theory problems such as stable matching. Next, we will provide a background in the machine

learning methods that are used for the experimental results. Lastly, we will introduce the

notion of randomized matching as a more general form of one-to-one matching and discuss

the necessity of re-framing the stable matching problem as a randomized matching problem

when applying deep learning methods.

5.1 Why Deep Learning

Despite significant progress in economic theory over the past few decades, there are still

many fundamental theoretical questions which remain unanswered. A long-standing one is

the problem of designing an auction that maximizes expected revenue, yet only the case

where a single-item is up for auction is fully understood. Motivated by the ability of neural

networks to automatically pick up the relevant features in the underlying data and recent

theoretical results on the ability of neural networks to find globally optimal solutions for

non-concave/non-convex objective functions, Dütting et al. [6] demonstrate how to cast the

problem of designing an (essentially) revenue-optimal, DSIC mechanism as a supervised ma-

chine learning problem. By doing so, they are able to not only replicate prior theoretical and

analytical results in the field of auction theory, but are also able to design essentially optimal

auctions for more poorly understand auction design problems as well as for combinatorial

settings.

Whereas in auctions, bidders have valuations over items but not vice versa, in matching
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markets, we have two-sided preferences. However, the setup of these two types of economic

problems are still remarkably similar. Given the success of this deep learning framework in

aiding the understanding of problems within auction theory, we hoped similar deep learning

methods could also be applied successfully to problems in the study of matching markets.

In particular, we hope to address two questions with this methodology.

1. Can deep learning methods replicate theoretical results like Gale-Shapley [8] and given

a preference list for every agent in the market, find a stable matching?

2. Theorem 4.2 tells us that no stable matching mechanism is also DSIC. Can deep

learning methods be used to create an approximately stable, DSIC mechanism that

help us better understand and quantify the tradeoffs between these two properties?

5.2 Fundamentals of Deep Learning

Before beginning to discuss deep learning methods and neural networks in more detail,

I would like to first take a step back and note that deep learning methods, while used

extensively throughout many fields of research and in practice, are not yet well understood

in a rigorous, mathematical way. Originally, neural networks were designed to work like

biological neurons in our brain. If we see a green traffic light when driving, that input

would travel through our retina to the brain, where various neurons would fire in succession,

processing this data and then translating that into an action, like stepping on the gas pedal.

The field of computational learning theory continues to work on discovering the theoretical

underpinnings that make machine learning methods like deep learning work, but for the

purpose of this thesis, we will only describe at a high level what steps our deep learning

algorithm is taking, without necessarily providing mathematical justifications.

5.2.1 A Deep Learning Framework

At the most general level, deep learning is one method used in the broader field of machine

learning that takes in a set of inputs X and uses those inputs to predict an output Y [17].

Given pairs of inputs and outputs (the training set), a deep learning algorithm will try to

learn associations and patterns that allow it accurately map inputs to outputs in the training

set. Ideally, this mapping would also allow us to more accurately predict outputs on future,

previously unseen inputs (test set). Consider the classical example of image classification.

Inputs to this algorithm would be images of either cats or dogs, and the corresponding
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outputs would be labels for what animal is depicted in each image. Then, the deep learning

algorithm will learn features that can be used to distinguish these two types of images, such

as sharp teeth, fur patterns, etc.

Figure 5.1: Neural Network vs. Deep Neural Network

In order to learn these features, deep learning algorithms use a data structure known as

a neural network (Figure 5.1), which is composed of an input layer, an output layer, and

hidden layers in between. Input layers take in a numerical representation of the data, output

layers output the prediction, and hidden layers perform the computations in between. As

seen in Figure 5.2, each node receives input from either other nodes or an external source,

and computes the sum of a linear combination of these inputs through the weights w and

bias b, denoting the relative importance of each input. After computing this sum, a non-

linear activation function such as tanh, sigmoid, etc. is applied, which acts as a threshold

determining whether a node fires and triggers the following connected nodes.

Figure 5.2: Neural Net Node

We call the neural network fully connected if every node in each layer is connected to every

other node in the following layer, as depicted in Figure 5.1. We also call this process ‘deep’
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learning because as we increase the ‘depth’ of the neural network with more hidden layers,

the neural network improves its ability to approximate more complex functions and learn

more subtle features.

After the neural network converts every input to an output through the feed forward process,

we evaluate how good the predicted outputs are relative to the expected outputs through the

loss function L. The ultimate goal of our deep learning algorithm is to minimize this loss by

adjusting the weights and biases at each node of the neural network through back propagation

via gradient descent. This process backtracks through every layer of the neural network and

updates the weights and biases of each node by iteratively moving in the direction of steepest

descent (the negative gradient) in order to find the minimum of this loss function at the

‘bottom of the valley’. A learning rate parameter, which we can choose, determines how

far we travel in the direction of steepest descent, which acts as a multiplier for the gradient

vector. Thus, through the deep learning algorithm, we are able to iteratively update our

neural network such that it becomes an increasingly accurate predictor of correct outputs

given new inputs.

5.2.2 Augmented Lagrangian Method

Whereas in the general description of deep learning algorithms, we seek to solve an uncon-

strained optimization problem, in our experimental setup, we need to solve a constrained

optimization problem. To do so, we use the augmented Lagrangian method, which solves

problems of the form

min f(x) s.t. ci(x) = 0 ∀i ∈ I

Specifically, we use the quadratic penalty method, which minimizes the unconstrained func-

tion

Φ(x) = f(x) +
∑
i

λici(x) +
ρ

2

∑
i

ci(x)2

Starting with initial weights for λi, ρ, we iteratively update the λi by the following rule:

λi ← λi + ρci(xk) where xk is the solution at the k-th step

The hyperparameter ρ is set at the beginning of the training process and remains fixed

throughout.
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5.2.3 Gradient Descent and the ADAM Optimizer

To perform the iterative process of gradient descent, we first split the training data into

multiple sections called mini-batches. Starting with the first mini-batch, we evaluate the

error for each data point in the mini-batch and then update the model accordingly. By

splitting the training data into mini-batches, we are able to evaluate the gradient faster than

if we were to load in the whole training data set, but we are also able to prevent ‘noisy’

gradients, which would occur if we updated the model after evaluating on a single data point

each time. Once we have iterated through every mini-batch in the training data, we have

completed one model training cycle, called an epoch.

To begin, we need to initialize our weights and biases correctly. If they start too small, the

signal shrinks as it passes through each layer until its too tiny to be useful and if they start

too large, the signal grows as it passes through each layer until its too massive to be useful.

To initialize them just right, Xavier initialization [10] is used where each weight and bias is

drawn from a uniform distribution with mean zero and variance 1
nin

, where nin is the number

of neurons feeding into it. To compute the gradients at every step, automatic differentiation,

also known as autograd, maintains a computational graph of all mathematical operations

performed on a node and analytically differentiates the function by iteratively applying the

chain rule.

In our case, we use an extension of the standard gradient descent methods, an optimizer called

ADAM. Whereas gradient descent maintains one learning rate for all the model parameters,

ADAM keeps track of a per-parameter learning rate and updates them using an exponential

moving average of the first and second moments of the gradient. This optimizer works well

for models with many parameters that are training on a large set of data.

5.3 The Randomized Matching Model

Given that we need to take gradients at every step of our deep learning algorithm, it is

important that the functions we are differentiating are relatively smooth. However, one-to-

one matching, as discussed in Part I, is a binary, where (m,w) is either matched or not. This

leads to a non-smooth function for us to differentiate and therefore, requires us to introduce

the concept of randomized matching, which will allow us to differentiate our loss more easily.

In the first part of this thesis, we discussed the formal model for one-to-one matching and

more specifically, the deterministic model of one-to-one matching. Given a set of n men and
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v women, we might represent the resulting stable matching µ as a n × v matrix d, where

dmw = 1 if man m and woman w are matched and otherwise, dmw = 0. However, we might

want to expand to consider probabilistic distributions over possible matchings rather than

deterministic ones. To do so, we can introduce what are known as random matchings.

Definition 5.1 (Random Matching). A random matching r = [rmw]m∈M,w∈W is a real,

doubly stochastic matrix, i.e., it satisfies

(i) 0 ≤ rmw ≤ 1 for all m ∈M,w ∈ W ,

(ii)
∑

m∈M rmw = 1 for all w ∈ W ,

(iii)
∑

w∈W rmw = 1 for all m ∈M .

Here, rmw represents the probability that man m is matched with woman w and moreover,

the stochastic row vector rm = (rmw)w∈W represents the probability distribution of man m

matching with any woman, and the stochastic column vector rw = (rmw)m∈M represents the

probability distribution of woman w matching with any man.

Definition 5.2 (Permutation Matrix). A permutation matrix is a square binary matrix that

has exactly one entry of 1 in each row and column and 0s elsewhere.

Definition 5.3 (Deterministic Matching). A random matching r that is also a permutation

matrix is called a deterministic matching.

In Part I, we defined an important notion of stability for deterministic matchings, namely

that a matching is stable if there are no blocking pairs (m,w) such that m �w µ(w) and

w �m µ(m). For randomized matching, we define ex ante justified envy below for men, with

the definition for women symmetrical.

Definition 5.4 (Ex Ante Justified Envy). A random matching r causes ex ante justified

envy of agent i ∈M towards a lower-ranked agent j ∈M \ {i} with i �c j for some woman

c ∈ W if ria > 0 for some c �i a with a ∈ W \ {a} and rjc > 0.

Intuitively, this definition of ex ante justified envy tells us that if woman c prefers man i to

man j and man i also prefers woman c to woman a, then (i, c) should be matched, and the

probabilities that (i, a) and (j, c) are matched should converge to zero.

Definition 5.5 (Ex Ante Stability). A random matching r is ex ante stable if no man or

woman experiences ex ante justified envy as a result of r.

As shown in Kesten and Ünver [12], for a deterministic matching, ex ante stability and the

traditional definition of stability from Chapter 2 are equivalent. From here on out, we will

always be referring to the one-to-one randomized matching when speaking about matching,

as opposed to deterministic matchings in Part I.



Chapter 6
Finding Approximately Stable Matchings

As in Dütting et al.’s paper on deep learning for optimal auction design, we begin by demon-

strating that our deep learning methods can replicate the theoretical results already know.

In particular, we know that for any set of preferences, a stable matching must exist. We

hope to answer the following question.

Using a deep learning framework with randomized matchings, can we encode the

notion of stability into a loss function to learn approximately stable matchings?

6.1 Experimental Setup

6.1.1 Neural Net Architecture

Using PyTorch, we implement a feed-forward neural network with a total of three linear,

fully connected layers and a variable number of hidden nodes (default 100). Starting with

a small case, as inputs, we take in randomly generated preference data for sets of five men

and five women. At each node in the neural network, we use the activation function tanhx.

Given that our desired output is a random matching, we require that our resulting matrix

output be of dimension 5× 5 and be doubly stochastic.

As we train our model, the neural network repeatedly updates the probabilities in the ran-

dom assignment matrix r. To compute r, we first have the neural network compute two

random matchings r1ij and r2ij , with the first matching normalized along the rows and the

second matching normalized along the columns. Both normalizations are performed using

49
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the softmax function and the probability of matching man i with woman j can be computed

as the minimum of the corresponding normalized scores, i.e.

rij = min

{
er1ij∑n
k=1 e

r1kj
,

er2ij∑v
k=1 e

r2ik

}
Note that by setting r = min(r1, r2), the resulting matrix may have row and column sums

less than 1; we will address this issue below.

6.1.2 Preference Inputs

Given that we assume full preferences for each individual, meaning that everyone would

prefer to be married to any member of the opposite sex rather than not being married at

all, if we have m men and w women, our input is two m × w preference matrices P and

Q, with entries limited to be within (0, 1]. A row in the first matrix Pm represents the

preference profile of man m over all possible choices of women w ∈ W . In particular, the

row Pm represents the discrete linear ordering in evenly spaced intervals from 1
|W | to 1. In

contrast, a row in the second matrix Qm is a vector where each Qmw represents the the

ranking of man m in the preference profile of woman w. Alternatively, whereas each row is

a preference profile for each man in the first matrix P , each column is a preference profile

for each woman in the second matrix Q. Combined, these provide a full set of preferences of

every man over every woman, and vice versa. Since for all experiments, we look at the small

market of five men and five women, each individuals’ preference list can be represented as

some permutation of the list [1, 0.8, 0.6, 0.4, 0.2].

6.1.3 Optimization Problem

Using deep learning methods, our goal is to minimize the ex ante stability violation of the

resulting random matching r given a set of preference inputs. First, we must encode the

definition of ex ante stability into a continuous and differentiable loss function. To do so,

we compute the expected ex post stability violation for a random matching r as a proxy

for the ex ante stability violation by considering every possible blocking pair (i, c) with

i ∈ M, c ∈ W , and looking at whether each man i or woman c experiences ex ante justified

envy. We compute this as follows with P,Q defined as the input preference matrices of men’s

ranked lists over women and women’s ranked lists over men, respectively.
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Definition 6.1 (Expected Ex Post Stability Violation). The expected ex post stability vio-

lation for a random matching r is given by

stv(r) =
∑

(i,c)∈M×W

 ∑
j∈M\{i}

rjc ·max{Qic −Qjc, 0}

 ∑
a∈W\{c}

ria ·max{Pic − Pia, 0}


Parsing this, if (i, c) is a blocking pair where i �c j and c �i a (encoded by the two max

functions over P,Q), then we want to minimize the assignment probabilities of rjc and ria,

which represent sub-optimal pairings (encoded by minimizing the product rjc and ria).

Additionally, notice in Definition 5.1 that the doubly stochastic matrix is specified as having

the sum of entries in each row and each column be equal to 1. However, since we compute

r1 and r2 by taking the softmax of rows and columns, respectively, and then taking the

minimum of the two matrices, we can only guarantee that rows and columns of r sum to at

most 1. To see how this might be problematic, consider for example

r1 =

(
1 0

0 1

)
, r2 =

(
0 1

1 0

)
, r = min(r1, r2) =

(
0 0

0 0

)

In a deterministic matching setting, the all-zeros assignment matrix would be interpreted as

keeping every agent single, but the matching would not be stable because any pair of agents

(m,w) would prefer to be matched than to remain single. In fact, the ideal solution would

be for every agent to have a spouse, so that the sum of entries in the random assignment

matrix r is maximized. However, our inability to output a doubly stochastic matrix with

entries that sum in each row and column to exactly 1 causes this computational problem

with our theoretical definition of ex ante stability. Thus, in the 5 × 5 case with random

matching r, our constrained optimization problem to solve would be

min stv(r) s.t.

|M |∑
i=1

|W |∑
j=1

rij = 5

Experimentally, we saw that imposing a penalty when
∑
rmw < 5 was unsuccessful at

preventing non-viable solutions like the non-zeros assignment matrix. Upon further exam-

ination, we realized that the divergence of r1, r2 is a major factor in causing the all-zeros

matrix to be a solution. Thus, we argue that minimizing the divergence of r1, r2 is equivalent

to maximizing the sum of entries in the random matching r, and attacks the problem more

closely to its source, rather than after the minimum of r1, r2 has already been computed.
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Therefore, the two constrained optimization problems

min stv(r) s.t.

|M |∑
i=1

|W |∑
j=1

rij = 5 and min stv(r) s.t. d(r1, r2) = 0

are equivalent.

Definition 6.2 (Divergence). The divergence of two matrices a, b is defined as follows.

d(a, b) =

|M |∑
i=1

|W |∑
j=1

|aij − bij|.

Furthermore, we also compute our expected ex post stability violation by decomposing it

into two parts, the ex post stability violation for the column-stochastic matrix r1 and the

column-stochastic matrix r2. Thus, our final constrained optimization problem is as follows

min stv(r1) + stv(r2) s.t. d(r1, r2) = 0.

Then, using the augmented Lagrangian method as discussed in Section 5.2.2, our loss function

is given by

L = stv(r1) + stv(r2) + λd(r1, r2) +
ρ

2
(d(r1, r2))

2

If we have n men and n women, then we expect the loss computation to require O(n3)

time, because there are n2 possible blocking pairs to check, and 2n− 2 possible independent

deviations to check for each blocking pair, with n − 1 possibilities for j 6= i and n − 1

possibilities for a 6= c.

6.2 Model Implementation

For each of our experiments, we include the following parameters. To set up the neural

network, we have the number of men/women on one side of the market, the number of nodes

in each hidden layer of the neural network, the learning rate for the ADAM optimizer, and

the number of total epochs to train the model for. For building and evaluating the model,

we have parameters that control the number of data points in the training and test set as

well as the batch size in each set. We also have a parameter that controls how frequently the

model is evaluated on the test set to measure improved performance over time. Lastly, for

the augmented Lagrangian method, we have the hyper-parameters λpen and ρpen that control
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the size of the linear and Lagrangian penalty term, as well as a parameter for the update

frequency of λpen. We use the PyTorch deep learning libraries to implement our model and

run the experiments on the Harvard Odyssey computing cluster with NVIDIA GPU cores.

To assess our deep learning algorithm, we looked at four main metrics. First and foremost,

we looked at the expected ex post stability violation stv(r1) + stv(r2). Second, we looked

at the overall loss L, which was the summation of our ex post stability violation and the

Lagrangian penalty term. We expect these to converge towards zero as we train our model.

Furthermore, we look at the completeness and overall social welfare of agents in this market,

defined as follows.

Definition 6.3 (Completeness). The completeness of a random matching r, which must be

in the range [0, |M |], is defined as
|M |∑
i=1

|W |∑
j=1

|rmw|

Completeness is the L1 norm of the random matching and we seek to maximize this by

equivalently minimizing d(r1, r2) in our loss function’s Lagrangian penalty term.

Theorem 6.4 (Birkhoff-von Neumann). If A is a doubly stochastic matrix, then there exist

θ1, . . . , θk ≥ 0 with
∑k

i=1 θi = 1 and permutation matrices P1, . . . , Pk such that

A = θ1P1 + · · ·+ θkPk

For a random matching r with entries in each row and column summing to 1, we can

decompose it using the Birkhoff-von Neumann Theorem into a probability distribution ~θ

over a set of deterministic matchings P1, . . . , Pk.

Definition 6.5 (Welfare). The overall social welfare created by a random matching r, with

inputted preferences P,Q of men and women, is

|M |∑
i=1

P (mi) · ri +

|W |∑
j=1

P (wi) · r>i

In words, the overall social welfare of a random matching is measured by summing over

the dot product of the preference list of each individual agent with their probability vector

containing their randomized assignments. Note that we do not seek to maximize welfare

in our optimization problem, but rather, look at it in comparison to the social welfare

maximizing matching which is not necessarily stable.
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Parameter Optimal Value

Agents 5
Hidden Nodes 100
Epochs 300
Training Data Size 6400
Training Batch Size 128
Test Data Size 6000
Test Batch Size 100
Test Log Interval 10
λpen 0
ρpen 0.001
λpen Update Frequency 3

Table 6.1: Final Model Configuration

To find the optimal parameters, we iterated through many combinations of λpen, ρpen, and

the update frequency that would minimize our stability violation below 0.1 and maximize

the completeness to be above 4.5. The optimal parameters for our final set of experiments

presented here are listed in Table 6.1.

6.3 Uncorrelated Preferences

After appropriately tuning our initial parameters, we look at the simplest case of matching

for preferences drawn independently from the uniform distribution over all possible discrete

preference lists (a total of 5! of them for any given individual) given the final model configu-

ration in Table 6.1. For completely uncorrelated preferences on both sides, we see in Figure

6.1 plots showing the evolution of the stability violation, completeness, loss, and welfare over

300 epochs of training.

Looking first at our stability violation graph in Figure 6.1a, we see that it sharply increases

for about the first 100 epochs before quickly decreasing and plateauing. This is a result of

the interplay between the direct objective we are trying to minimize, the stability violation,

and the Lagrangian penalty term which intends to minimize d(r1, r2). Since we initialize

very small λpen, ρpen, our Lagrangian penalty term starts out very small relative to the

stability violation. In an effort to minimize the larger stability violation term, the match

matrix quickly converges to be all-zero, which trivially minimizes the stability violation,

while the Lagrangian penalty term grows quickly, given that d(r1, r2) is extremely large.

Near the 100th epoch, the Lagrangian penalty term has grown sufficiently large to balance
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Figure 6.1: Plots of stability violation and completeness when both men and women’s
preferences are drawn uniformly at random.

the stability violation term, and for a short while, we have a sharp increase in the stability

violation. However, over the remaining 200 epochs, the two terms balance each other out,

achieving the goals of minimizing stability violation and and d(r1, r2) simultaneously.

Experimentally, the stability violation achieves a minimum of 0.1281 at the end of 300 epochs.

Given that we compute the stability violation over all ten agents (five men, five women), we

can see that the stability violation is in fact, only 0.01281 for each individual agent, which

is incredibly small compared to the fact that each individual’s preferences is represented by

five discrete, linearly spaced intervals ([0.2, 0.4, 0.6, 0.8, 1]). Alternatively, since 0.1281 is

approximately halfway between 0 and 0.2, we can interpret the stability violation as follows.

If we use this deep learning method to compute matchings for a set of five men and five

women on a large set of preferences, for approximately half of them, only one agent receive

a matching that violates their preferences and leads to a blocking pair.

In Figure 6.1b, we can see the opposite effect, where completeness remains near zero for

the first 100 epochs, and then climbs quickly to reach its maximal level soon afterwards.

Experimentally, the final matching achieves a maximum completeness of 4.7761. This is

a positive result given that our completeness is extremely close to its maximum of 5. To

interpret our result, if we use this deep learning method to compute matchings for a set of

five men and five women on a large set of preferences, we will be able to decompose our final

matching into a probability distribution over deterministic, approximately stable matchings

more than 95% of the time.

Overall, we are also able to see that in the case of uncorrelated preferences for all agents,
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the results of the training and test sets are extraordinarily similar. Given how closely they

track each other despite the small size of our randomly drawn training and test sets (6400

independent preference sets in the training data and 6000 independent preference sets in the

test data), it is likely that this method could be extended for larger data sets as well.

In addition to looking at the evolution of our stability violation and completeness over the

300 epochs, we also want to evaluate the efficacy of our Lagrangian penalty term, which

measures the divergence of the row-stochastic and column-stochastic matrices used to derive

the final matching. As noted prior, penalizing the divergence of these two matrices is used as

a proxy to maximize the L1 norm of the matrix, and in Figure 6.2, we can see the evolution

of r1, r2,min(r1, r2) over the 300 training epochs, with each matrix heat map updating every

60 epochs moving horizontally and then down within each subfigure. In the first 100 epochs,

mirroring the graphs above, we see that a trivially stable matching is learned, with a singular

matching between the last man and the second-to-last woman. However, this comes at the

cost of the Lagrangian penalty term, meaning the row-stochastic and column-stochastic

matrices diverge greatly. As we see in the first two plots of Figure 6.2a, every woman is

matched with probability 1 to the last man, and in Figure 6.2b, every man is matched with

probability 1 to the second-to-last woman. Clearly, these two matchings differ greatly, and

when the minimum of the two matrices is taken, we get the first two plots in Figure 6.2c,

which demonstrate the singular pairing that arises and reflect both the low stability violation

and completeness prior to the spikes in Figures 6.1a and 6.1b. In the bottom right heat map

of each subfigure, visualizing the final match, we see that there are some matches that occur

with close to probability 1, such as the first man with the second-to-last woman, but we see

that the matchings are less clear for the first and second women, for example.

6.4 Correlated Preferences

In the prior section, we assumed uncorrelated preferences for each man and woman. However,

we would like to better understand how correlated preferences on one side or both sides of

the market affect aggregate welfare. Using the additional parameters mcom val,wcom val,

which vary between [0, 1], we are able to denote the probability of an individual agent having

a common value preference list as opposed to a private preference list [16, 3]. Mathematically,

with n men and n women, we model this as so.

First, we draw a common preference list uniformly at random from the finite set of possible
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Figure 6.2: Evolution of matching when both men and women’s preferences are
uncorrelated. In each subfigure moving horizontally and then down, each 5× 5 matrix heat

map (generated every 60 epochs) shows the current matching at that epoch. Brighter
colors indicate higher probability matchings and darker colors indicate lower probability

matchings.
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discrete preferences for both men and women, notated as vectors of length n

Cm = {cm}m∈M Cw = {cw}w∈W

Secondly, we draw private preferences for each individual agent, which gives a n×nmatrix de-

noting each man’s discrete preferences over every woman, and an n×n matrix denoting each

woman’s discrete preferences over every man. To generate the final preference matrix, we first

draw n values from a Bernoulli distribution with probability mcom val. For each successful

draw, we replace the n-th man’s private preference list with the common preference list.

Similarly, we draw another n values from a Bernoulli distribution with probability wcom val

and for successful draws, replace the private preferences of the n-th woman with the com-

mon preference list. Thus, when mcom val = wcom val = 0, we have independent, uniformly

random preferences being drawn for every agent, whereas when mcom val = wcom val = 1,

every man has the same set of preferences over all women, and similarly for women.

Given this mathematical framework, we perform the following experiments.

1. Vary wcom val in 0.1 increments from 0 to 1, while keeping mcom val = 0

2. Vary mcom val in 0.1 increments from 0 to 1, while keeping wcom val = 0

3. Vary mcom val,wcom val together in 0.1 increments from 0 to 1, with mcom val =

wcom val

When discussing the results of these experiments in terms of stability violation, completeness,

and match convergence, we focus on the first set of experiments, where men’s preferences are

completely uncorrelated and women’s preference correlation varies. We see that the results

of the second and third set of experiments produce similarly successful results and thus, omit

their analysis for brevity.

6.4.1 One-Sided Full Correlation

To begin, we look at the most extreme case of one-sided correlation where men’s prefer-

ences remain completely uncorrelated, as above, and women’s preferences are completely

correlated. In the framework that we discussed above, this means that every woman has

the same common value preference list over all men. In this case, we see that the stability

violation starts off, and remains extremely small through the entire training in Figure 6.3a,

which lasts for about 20 epochs before reaching optimal conditions below 0.05. Similarly, we

see in Figure 6.3b that the completeness increases linearly over the 20 epochs to 4.9882 out of
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the maximum of 5. This implies that if we evaluate our model on a large set of preferences,

25% of the time, only one agent would would receive a matching that violates their pref-

erences and leads to a blocking pair, and over 99% of the time, the matching is complete.

We see that in the case of maximal preference correlation on one side of the market, we

are able to quickly find a matching between men and women that minimizes the stability

violation and maximizes the completeness of the final match. As desired, our results in the

test set also track the results in the training set. In addition, we see symmetric results for

the case where men’s preferences are completely correlated and women’s preferences remain

completely uncorrelated.
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Figure 6.3: Stability violation and completeness plots when women’s preferences are
completely correlated and men’s preferences are completely uncorrelated.

We omit the match convergence plots for this case because for fully correlated preferences on

one side of the market, a deterministic matching is learned almost immediately, and there is

no visible evolution.

6.4.2 One-Sided Partial Correlation

To examine a more interesting, intermediate example of one-sided correlation, we now look at

the case where men’s preferences remain completely uncorrelated and women’s preferences

are correlated with wcom val = 0.5. This means that each woman has a 50% chance of

maintaining their individual preferences and a 50% chance of adopting the common value

preferences. After 300 epochs, the final stability violation was 0.072 and the completeness

of the match was 4.7376. Similar to the pattern in the case of uncorrelated preferences, we
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again see a similar trend where the first 60 epochs strongly favor minimizing the stability

violation, and then after a dramatic spike in both, succeed in optimizing for both equally

well.

0 50 100 150 200 250 300
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

St
ab

ilit
y 

Vi
ol

at
io

n

Stability Violation (mcom 0.0, wcom 5.0)
Test
Train

(a) Stability Violation

0 50 100 150 200 250 300
Epoch

1

2

3

4

5

Co
m

pl
et

en
es

s

Completeness (mcom 0.0, wcom 5.0)

Train
Test

(b) Completeness

Figure 6.4: Stability violation and completeness plots when women’s preferences are 50%
correlated and men’s preferences are completely uncorrelated.

In this intermediate case, we can also analyze the allocation matrices as seen in Figure 6.5.

In contrast to the prior case of uncorrelated preferences, we can see that the matches learned

here are closer to looking like a deterministic matching. Indexing the men and women each

from 0 to 4, in the bottom right heat map, we see that the we have close to deterministic

matchings for (m4, w3) and (m3, w4). We also have a slightly weaker matching of (m2, w1)

and a relatively even split for the remaining matchings between m0,m1 and w0, w2. Given

that correlated preferences make the data sets more homogeneous, we believe that an increase

in preference correlation is likely to lead to stable matchings that look more deterministic.

Generally speaking, as we increase wcom val from 0 to 1 and make women’s preferences

more homogeneous, the stability violation becomes smaller, the completeness of the final

matching gets closer to 5. Furthermore, the visualization of match convergence depicts more

deterministic final matchings and the model takes fewer epochs to train before converging

to an optimum. Due to a decrease in the variation of both the training and test data sets

as women’s preferences become more homogeneous, there are fewer patterns for our deep

learning methods to discover. Therefore, it makes sense that the final matchings improve

on metrics such stability violation and completeness and more closely approximate stable

deterministic matchings as wcom val grows.
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Figure 6.5: Evolution of matching when women’s preferences are 50% correlated and men’s
preferences are uncorrelated. In each subfigure moving horizontally and then down, each
5× 5 matrix heat map (generated every 60 epochs) shows the current matching at that
epoch. Brighter colors indicate higher probability matchings and darker colors indicate

lower probability matchings.
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6.5 Welfare Comparisons

Finally, we know that the welfare-maximizing matching is not necessarily contained in the

set of stable matchings. Thus, we would like to compare the aggregate welfare attained in

the stable matching found via deep learning methods to the maximal expected welfare of any

matching in our market (an upper bound). More specifically, we compare these two types of

welfare in two cases: one-sided and two-sided correlation, where we vary the correlation in

increments of 0.1 from 0 to 1.

To find the expected maximal welfare, we recast our stable matching problem as a linear

sum assignment or minimum weighted matching problem on a bipartite graph. Using the

Hungarian algorithm [15] in scipy.optimize, we compare the maximal welfare for non-

stable matchings to the aggregate welfare of approximately stable matchings found with our

deep learning methods on the training and test sets. In Figure 6.6, we see three key findings.

First, regardless of one-sided or two-sided correlation and regardless of the correlation prob-

ability, the expected maximal welfare on the training and test sets is higher than the welfare

of the learned stable matchings. This tells us that there is a trade-off between stability and

welfare maximization, and that imposing the stability constraint does aggregate a loss in

overall welfare for the individuals. However, this tradeoff is rather small for each of the ten

agents, given that the decrease in aggregate welfare is on average, 0.5, and at most, 1.5.

Additionally, we see that as the common value probability increases, meaning the prefer-

ences become more homogeneous, the overall social welfare decreases in both the welfare-

maximizing and stable matching. This can be explained by the fact that when agents have

greater heterogeneity in preferences, it is more likely that each agent can be matched to

one of their top choices, whereas if everyone on one side of the market has the same set of

common value preferences, only one of them can receive their top-ranked match, and more

agents will receive lower-ranked matches.

Lastly, we see that the expected maximal welfare decreases much more dramatically in Figure

6.6b with two-sided correlation than in Figure 6.6a with one-sided correlation. Whereas in

Figure 6.6a the expected maximal welfare doesn’t dip below 7.5, in Figure 6.6b the expected

maximal welfare for fully correlated preferences on both sides is 6, at the same level as the

average aggregate welfare for the stable matchings in both the training and test sets. Similar

to what was argued in the previous finding, we see that severe homogeneity in preferences

leads to a sharp decrease in expected maximal welfare, due to the fact that more agents will

be receiving lower-ranked matches when competing for the same matches.
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Figure 6.6: Comparison of expected maximal welfare to expected aggregate welfare in
stable matchings as correlation varies in 0.1 increments between 0 and 1 for both one-sided

and two-sided correlation.



Chapter 7
Conclusions

In Part I, we provide exposition on the main results from the matching literature in one-

to-one and many-to-one settings. Heavily relying on the work of Roth and Sotomayor, we

prove the existence of stable matchings, discuss the structure of the set of stable matchings,

and illuminate the strategic questions that naturally arise in stable matching mechanisms.

Furthermore, we provide real-world context at the end of each chapter to help the reader

better understand how these mathematical findings play out in practice.

In Part II, we begin by providing the fundamentals of machine learning, explain the experi-

mental setup of our deep learning framework, and conclusively demonstrate that this novel

computational method is able to replicate the theoretical results from Part I and learn stable

matchings given preference inputs. Specifically, we demonstrate the following:

1. Our deep learning framework is able to learn an approximately stable matching when

preferences on both sides of the market are uncorrelated.

2. Our deep learning framework is able to learn an approximately stable matching when

preferences on one or both sides of the market are correlated at varying levels.

3. Our deep learning framework is able to provide a computational comparison of the

maximal welfare in a non-stable matching with the welfare of stable matchings at

various preference correlation levels.

The success of these experiments suggest that the deep learning framework has great poten-

tial to further the study of matching markets by analytically exploring difficult theoretical

questions.

64
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7.1 Next Steps and Future Work

In Chapter 6, we succeeded in encoding the notion of stability into a loss function and

given individual preferences of each agent in the market, were able to design a neural net to

learn an approximately stable matching between men and women. However, we also saw in

Theorem 4.2 that no stable matching mechanism is also DSIC.

Although a matching mechanism cannot be simultaneously stable and DSIC, it is not well

understood how bad this tradeoff is in practice. If we were able to create an DSIC matching

mechanism, what would the stability of the resulting matches look like? Would there be a

singular blocking pair (close to stable) or would there be many blocking pairs (very unsta-

ble)? We would like to computationally understand the tension between stability and IC by

imposing an additional DSIC constraint on the deep learning framework built in Chapter

6 and studying to what magnitude the stability of the resulting matches differs from the

stability of the matches learned in Chapter 6. To impose the DSIC constraint, we use a

similar implementation of RegretNet, as developed by Dütting et al. [6], but adapted for the

matching setting.

7.1.1 Quantifying Regret

To enforce the DSIC constraint, we must define an individual’s ex post regret for reporting

truthful preferences. There are two ways in which individual agents can mis-report their

preferences.

1. Agents can mis-report by truncating their preferences and stating that they would

prefer to be single rather than be matched with someone low on their preference list.

2. Agents can mis-report by re-ordering their preferences and stating the ranking of their

possible matches in a non-truthful order.

Given submitted preferences p′i, whether truthful or not, the resulting match r is returned,

with ri representing the probability vector of matchings for agent i. The utility of agent i is

then the dot product of ri with their true preferences pi. To measure the ex post regret rgti

for each agent i, we need to sample from the possible preference mis-reports for each agent,

compute the expected utility gain (if any) from these mis-reports, and sum over all agents

to quantify the total regret for submitting truthful preferences to the mechanism.

In order to impose the DSIC constraint, we need rgti = 0 for all i ∈M ∪W . Given that this

is again a constrained optimization problem as we had in Chapter 6, but with |M | + |W |
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more constraints, we can create the corresponding hyper-parameters λrgti for each agent and

a ρrgt such that |M |+ |W | more Lagrangian penalty terms can be added to the loss function

L. Given this, our new optimization problem is as follows:

min stv(r1) + stv(r2) s.t. rgti = 0 ∀i ∈M ∪W and d(r1, r2) = 0

Mirroring our work in Chapter 6, we can begin by finding optimal initial hyper-parameters

to train our model. Then, beginning with the case of uncorrelated preferences, we can com-

pare the magnitude of the stability violation and completeness before and after imposing

the DSIC constraint. We can also do the same comparison of stability violation and com-

pleteness for correlated preferences. Lastly, we can compare the overall social welfare of

these approximately stable matchings before and after imposing the DSIC constraint. By

providing quantitative metrics to measure the trade-off between stability and DSIC con-

straints, this work would be able to provide great insight and nuance into the theoretical

understanding of this impossibility theorem.

7.1.2 Policy Impacts

Moreover, if it is discovered that imposing DSIC constraints does not drastically increase

the stability violation, these deep learning methods have the potential to be used in practice

in areas where methods like deferred acceptance are being used now. As discussed prior in

Section 4.3, matching mechanisms like the original Boston public school mechanism allowed

strategic manipulations that caused great inequity in school assignments. Even though de-

ferred acceptance is now implemented, the matching mechanism, though stable, still remains

DSIC for only one side of the market.

However, if a DSIC, approximately stable matching mechanism could be created, it would

be feasible for Boston public schools to implement this deep learning method as opposed

to deferred acceptance. By doing so, both schools and parents would have incentive to

truthfully report their preferences, and the resulting matching would still be very close to

stable. Thus, future work in this area would not only be of theoretical interest to better

understand the trade-offs of the impossibility theorem, but also have real-world ramifications

in areas where matching algorithms are currently implemented.
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