On the Inner Radius of Nodal Domains

Dan Mangoubi

IHES/MPIM-Bonn mangoubi@mpim-bonn.mpg.de

Abstract

Let (M, g) be a closed compact smooth Riemannian Manifold of dimension n. Let Δ be the Laplace-Beltrami Operator on M. We consider the eigenvalue equation $\Delta \varphi_{\lambda} = \lambda \varphi_{\lambda}$. The λ -nodal set is the set $\{\varphi_{\lambda} = 0\}$, and any connected component of the complement $\{\varphi_{\lambda} \neq 0\}$ is called a λ -nodal domain.

Faber-Krahn Inequality shows that

Vol(a λ -nodal domain) $\geq (C/\sqrt{\lambda})^n$.

We prove that in dimension two one can in fact inscribe a ball of radius $C/\sqrt{\lambda}$ in any λ -nodal domain, i.e.,

Inrad(a λ -nodal domain) $\geq C/\sqrt{\lambda}$.

In dimension $n \geq 3$, we show

Inrad(a λ -nodal domain) $\geq (C/\sqrt{\lambda})^{n-1}$.

We show that this problem is closely related to a connection between the growth of harmonic functions and their zeroes.

References

[1] Local Asymmetry and the Inner Radius of Nodal Domains, to appear in Comm. Partial Differential Equations, arXiv:math/0703663.