An International Conference to Celebrate the Birthday of Shing-Tung Yau August 27-September 1, 2008

ON DEGENERATE ELLIPTIC MONGE-AMPERE EQUATIONS

Jiaxing Hong School of Mathematical Science, Fudan University Shanghai, 200433, China email: jxhong@fudan.edu.cn.

Abstract: Consider a kind of degenerate elliptic Monge-Ampere equations

$$\det(D^2 u) = K(x)f(x, u, Du) \text{ in } \Omega \subset R^2 \text{ with } u = 0 \text{ on } \partial\Omega$$

Suppose that $f \in C^{\infty}$ is positive and $\Omega \in C^{\infty}$ convex and that $K = d^m \tilde{K}$ for some integer m and smooth positive function \tilde{K} where d is the defining function of $\partial \Omega$. Then we have

Theorem 0.1 Any C^2 -solution to the above problem is in $C^{\infty}(\bar{\Omega})$. Moreover, if f satisfies some natural structure condition, the above problem always admits a unique solution smooth up to the boundary

As an application

Theorem 0.2 The eigenvalue problem

 $\det(D^2 u) = \lambda u^2 \text{ in } \Omega \subset R^2 \text{ with } u = 0 \text{ on } \partial \Omega$

always has a solution (λ, u) where $u \in C^{\infty}(\overline{\Omega})$ and convex provided that Ω is smooth convex

Our arguments consists of two main ingredients. One is to give a positive lower bound for Δu and another is to present a priori estimates for a class of linear degenerate elliptic problem which is very closely related to the above degenerate elliptic Monge-Ampere equations.