Current Developments in Mathematics 1996

Edited by

Raoul Bott Arthur Jaffe David Jerison George Lusztig Isadore Singer S.-T. Yau

Current Developments in Mathematics, 1996

Editorial Board:

Raoul Bott Arthur Jaffe S.-T. Yau

Harvard University Cambridge, Massachusetts David Jerison George Lusztig Isadore Singer Massachusetts Institute of Technology Cambridge, Massachusetts

Copyright © 1997, 2010 by International Press Somerville, Massachusetts, U.S.A.

All rights reserved. Individual readers of this publication, and non-profit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgement of the source is given. Republication, systematic copying, or mass reproduction of any material in this publication is permitted only under license from International Press.

Excluded from these provisions is material in articles to which the author holds the copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author. (Copyright ownership is indicated in the notice on the first page of each article.)

ISBN 978-1-57146-147-6

Paperback reissue 2010. Previously published in 1997 under ISBN 1-57146-035-7 (clothbound).

Typeset using the LaTeX system.

Preface

These are the proceedings of the joint seminar by M.I.T. and Harvard on the current developments in mathematics for the year 1996. Established in 1995, this seminar will be continued each year. In 1997 and following years, we will also add a section on open problems.

The organizing committee for the seminar is made up of representatives from the mathematics departments of the two institutions: Raoul Bott, Arthur Jaffe, and S.T. Yau from Harvard; and David Jerison, George Lusztig, and Isadore Singer from M.I.T.

We would like to thank each of the contributors and to recognize the several institutions without whose participation the seminar would not have been possible: the departments of mathematics at Harvard and MIT for their financial aid and the American Academy of Arts and Sciences for opening their facilities to us.

Editors

Contents

Automorphic forms and Lie algebras

	by R	ichard E. Borcherds	1
	Intro	duction	1
	1	The Leech lattice and $II_{25,1}$	2
	2	Kac-Moody algebras	5
	3	Vertex algebras	7
	4	The no-ghost theorem and I. Frenkel's upper bound	11
	5	Relations with moonshine	18
	6	The denominator function	20
	7	The automorphic form Φ	21
	8	The zeros of Φ	22
	9		23
	10	Some superalgebras of rank 10	26
	11	The Shimura correspondence	28
	12	Finiteness theorems	30
Ha	armo	nic analysis for affine Hecke algebras	
			37
	1	•	38
	2	<u> </u>	42
	3	-	47
	4		49
	5	Formation of L -packets of square integrable unipotent	
			52
	6	The example E_8	54
St	abilit	y and its uses	
		-	31
	1	Model Theory	62
			62
			69
	2		73
			74
			77
			79

		2.4 Local modularity	83 85
		2.6 Zariski Geometries	86
		2.7 Abelian groups of finite Morley dimension	87
	3	Applications	90
	-	3.1 Geometric translation	90
		3.2 Points on subvarieties of Abelian varieties	96
11 7-	1-		
		ets, paraproducts, and Navier-Stokes equations Types Meyer	105
		word \ldots	
		zents	
	1	Introduction	
	2	Notations	
	23	Weak solutions of Navier Stokes equations	
	4	A variational formulation of the Navier-Stokes equations	
	5	The affine group action	
	6	A divergence-free wavelet basis	
	7	Federbush's program	
į	8	Banach spaces adapted to Navier-Stokes equations	
9	9	Mild solutions to the heat equation	
•	10	Mild solutions to Navier-Stokes equations : the L^3 -case	
	11	The Leray projection	141
	12	Mild solutions of Navier-Stokes equations : the general case .	142
	13	More about mild solutions	145
•	14	The paraproduct algorithm	146
	15	Examples of Banach spaces which are fully adapted to the	
		Navier-Stokes equations	149
	16	T. Kato's algorithm : an abstract lemma	157
	17	Kato's algorithm applied to Navier-Stokes equations :	
		a straightforward example	158
	18	Kato's algorithm applied to the Navier-Stokes equations :	
		the Lorentz space $L^{3,\infty}(\mathbb{R}^3)$	
	19	Kato's algorithm : the Lebesgue space $L^3(\mathbb{R}^3)$	167
	20	Uniqueness of L^3 valued mild solutions	
	21	Kato's program : the Morrey-Campanato spaces $\ldots \ldots \ldots$	
	22	Kato's algorithm revisited	
	23	Improved regularity of solutions of Navier-Stokes equations .	176
	24	Examples of Banach spaces which are adapted to Kato's	1 -
		algorithm \ldots	178

25	Self-similar solutions of Navier-Stokes equations	182
26	Uniqueness of mild solutions to Navier-Stokes equations	184
27	Appendix : construction of a divergence-free wavelet basis	189
28	Appendix 2. Wavelets and the div-curl lemma	194
29	Conclusion	200