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Preface

These are the proceedings of the joint seminar by M.I.T. and
Harvard on the current developments in mathematics for the year
1996. Established in 1995, this seminar will be continued each
year. In 1997 and following years, we will also add a section on
open problems.

The organizing committee for the seminar is made up of
representatives from the mathematics departments of the two
institutions: Raoul Bott, Arthur Jaffe, and S.T. Yau from Harvard;
and David Jerison, George Lusztig, and Isadore Singer from M.L.T.

We would like to thank each of the contributors and to recognize
the several institutions without whose participation the seminar
would not have been possible: the departments of mathematics at
Harvard and MIT for their financial aid and the American
Academy of Arts and Sciences for opening their facilities to us.

Editors
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